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Abstract

In this work, we designed a particle damper which can be conveniently clamped on to a pipeline without affecting the
existing structure, showing a promising application in vibration reduction of real aircraft. Based on the designed particle
damper, the impact of particle filling rate on the vibration reduction effect, the effect of EDEM simulation on the energy
consumption of particles in the vibration process of the damper, and the result of actual vibration reduction test of parti-
cle damper installed on hydraulic pipeline were investigated. It is found that the vibration of the pipeline decreases first
and then increases with the increase of particle filling rate. The particle filling rate corresponding to the maximum parti-
cle energy consumption rate is consistent with that of the minimum pipeline vibration acceleration during the test, that
is, from 94.9% to 97.9%. The simulation results are in good agreement with the test results. Moreover, the vibration of
the hydraulic pipeline and actual aircraft pipeline are both obviously suppressed after the installation of the particle dam-
per. These results fully demonstrate the effectiveness and practicability of the aircraft pipeline particle damper.
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Introduction of the pressure pulsation. The normal operation of the
aircraft hydraulic pipeline is directly related to the
flight safety, therefore, it is urgent to develop an effec-
tive method to control the pipeline vibration, thereby
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preventing the flight accidents caused by the pipeline
failure.

Passive control methods are widely used and
accepted in pipeline vibration control, such as clamps,
improvement of the rigidity of pipeline system, change
of the natural frequency, and eclimination of low-
frequency resonance.””

However, in many cases, the structure limitations
prevent the application of the pipe clamps. It is worth
noting that the pipeline damper has little dependence
on the surrounding environment, which is available for
vibration reduction by being installed on the pipeline
only. In this case, there is great demand to investigate
the pipeline damper. Chiba and Kobayashi'® summar-
ized the dampers commonly used in piping systems,
including electro rheological dampers, viscoelastic dam-
pers (VED), and elastoplastic dampers (EPD). All these
dampers are able to lower the fluid pulsating pressure
and suppress pipeline vibration effectively. Yang et al.!!
invented a liquid pipeline damper, and Chen et al.'
proposed a dynamic vibration absorber applicable for
vibration reduction of pipe system. Based on Chen’s
research, Zhou et al.'® designed a frequency-adjustable
dynamic vibration absorber which could reduce the
vibration of the pipeline at different resonance frequen-
cies effectively.

In the past years, a series of methods for the reduc-
tion of system vibration by using dissipating system
energy were proposed, including particle impact dam-
per technique,'* metal-rubber composite absorber tech-
nique,'® friction damper technique,'® fluid viscous
damper technique,'” etc. Among them, the particle
damping technique is characterized by the advantages
of low cost and easy implementation, especially suitable
for the utilization in harsh environments. With the con-
tinuous relevant research, particle damping technique
has been successfully applied in aerospace and mechan-
ical fields. For example, Panossion'® greatly reduced
the high-frequency vibration (4000 Hz) of the liquid
oxygen inlet blade by using particle damping technique.
Xu et al.'”?* applied particle damper to beam structure
and plate structure, and found that the technique exhi-
bits good effect under the vibration above 1500 Hz, but
with poor effect for low-frequency vibration. In theore-
tical research, Cundall*' proposed the discrete element
method which simulates the interaction force between
particles by establishing different contact models, fol-
lowing by the simulation of the motion characteristics
of particles. The particle flow calculation software
EDEM (event-driven discrete element method) was
developed by DEM — Solutions Inc. based on discrete
element method, which is widely used to simulate and
analyze particle movement operations. Lu®*2° estab-
lished a mechanical calculation model for inter-particle
collisions. Though the above studies have developed
the particle damping technology to some extent, in the

Figure |. Particles movement state in closed structure: (a) flat
inner wall and (b) curved inner wall.

previous research work, particle damping techniques
were mainly used for the vibration reduction of blade
structure, beam structure, and plate structure. The
objective of this research lies in the perforated design of
honeycomb structure, and the particles were loaded
into small holes or honeycomb cavities to form a com-
posite structure, thus achieving the effect of vibration
reduction. There are no reports on vibration reduction
of pipeline structure and practical engineering applica-
tion, especially the research of the control of the vibra-
tion of pipeline system via externally attached particle
dampers.

This paper proposed an aircraft pipeline damper
based on particle damping technique of which the effec-
tiveness and practicability have been proved by simula-
tion and experiment. The novelty of the work mainly
lies in the application of this technology to aircraft
pipeline vibration reduction. We discussed the design
of the damper and its vibration damping mechanism.
Besides, we considered the influencing factors of vibra-
tion reduction and the optimization of design para-
meters, etc., which are different from the previous
efforts.

Design of particle damper

The particle damper designed in this paper uses light-
weight aluminum alloy to avoid the problem of large
stress due to the excessive mass of shock absorber. At
the same time, considering the assembly space and
energy consumption efficiency, a container with curved
inner wall was selected. Firstly, the circular section
needs less space than the square section, which endows
the former more convenience for installation. Secondly,
in contrast with the regular movement of particles in a
container with flat inner wall (Figure 1(a)), the move-
ment of particles in the containers with curved inner
walls are chaotic and irregular (Figure 1(b)). The irre-
gular movements of particles are usually accompanied
by (a) frequent collisions with the flat inner wall and
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B addition, there are six holes in the outer ring, which are
of Size M1.4, and utilized to cover the plate so that the
A particles are enclosed in the damper.
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Figure 2. Particle dampers: (a) model, (b) single unit, and
(c) multi unit.

higher friction between particles and the inner wall of
the container, leading to higher energy consumption.
The instrument employed in this work is obtained by
the addition of a particle damper with the diameter of
50 mm and the thickness of 3 mm to a pipe with the dia-
meter of 21 mm. To ensure a good sealing effect of the
damper, both sides of the cavity are sealed with cover
plates in the thickness of 1 mm, and a bolt with the dia-
meter of 1.4 mm is used to fasten the cover plates of the
cavity through six pre-manufactured bolt holes on both
sides. In addition, the grooves in the width of 10 mm
and the depth of 6 mm are prepared on the half and
lower semicircular cavities, and through-holes with the
diameter of 4mm were opened in the aluminum alloy
plane inside the groove. The two cavities can be tightly
clamped onto the pipe by installing bolts with the dia-
meter of 4 mm in the through-holes. The schematic and
physical particle dampers are shown in Figure 2(a) and
(b), respectively. Considering the influence of the cavity
structure on the damping effect of the damper, thin iron
sheets are used to divide the inside of the each semicir-
cular cavity into three small chambers, as shown in
Figure 2(c). The maximum outer diameter of the cavity
is 50mm, and the thickness of the wall between the
three small chambers basically evenly distributed is
3mm, as shown in Figure 2(c). The holes are divided
into six holes in the inner ring, which are of Size M4
and used to install the damper onto the pipe. In

Simulation of particle collision energy
consumption

Energy consumption mechanism of particle collision

Particle collision damping technology is developed to
consume the vibration energy of the system through
the impact and friction among particles, thus achieving
the purpose of vibration reduction. For multi-particle
systems, the discrete element method (DEM) is usually
needed, which calculates the interaction among parti-
cles, judges the real-time position of the particles, and
iterates the contact force and displacement of the parti-
cles to analyze the collision energy consumption
mechanism of the entire system. The cycle calculation
process of the DEM is shown in Figure 3.

Based on the force-displacement relationship, the
force of the particle can be understood through the dis-
placement. And according to Newton’s second law, the
motion equation of particle i can be obtained by using
equation (1):

m,'l'/'l,‘ = EF
{ 1,6; = 3M (1)

where 3F and 3M represent the resultant force and the
resultant moment of the particle 7/ at the center of mass,
respectively. m; and I; refer to the mass and the moment
of inertia. Besides, i1; and 6; denote the acceleration and
angular acceleration, respectively.

Then use the central difference method to solve
equation (1), as shown in equation (2):

() +1= (i‘i)zv_% + [%}NAI
. . )
(Oi)N +1= (Oi)N_% + [ETIIW} NAt

Contact forceF;

Relationship between force and displacement

bd

Displacementu;

Figure 3. Cycle calculation process.
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where At represent the time step, and N corresponds to
time 7.
Integrating equation (2), the equation (3) can be
obtained:
Wiy +1 = (w)y + @)y + %Af 3)
By +1 =0y + 0y + %Af

Then use Euler’s method to solve equation (3),
the update speed of the next time step is shown in
equation (4):

(i)y = ()1 + B’_I'F}NAI )
0. = (0 M
(GI)N (ez)Nfl + |:]l- }NAt
Finally, integrating both sides of equation (4) to
obtain equation (5):

{ iy +1 = (w)y + ()yAt (5)
0y +1 = 0y + (0:)yAL

The discrete element method to describe the process
of particle collision is actually used to describe the pro-
cess of contact generation and effect. In the process of
particle collision analysis, different contact models
should be established for different simulation objects,
therefore, it is very important to select the appropriate
contact model. In this paper, the Hertz-Mindlin (no
slip) contact model is mainly used for the simulation
and analysis of the motion state between particles.

Suppose the radii of the two particles are R; and R»,
respectively, and the velocities before the collision are
v; and v,. The normal force F,, and the normal damp-
ing force £ between particles can be obtained by using
equation (6):

F, = 4E* (R yad

(6)
Bl ==2,/3 pySmvy!
where E*, R*, and m* represent the equivalent elastic
modulus, equivalent particle radius, and equivalent
contact mass, respectively, which can be obtained by
using equation (7):

- i 1-v

E* E, E,

1 =1 € 7

R 1171_; ka ( )
* 11

m my + my

In addition, the coefficient 8, the normal overlap
amount «, the normal stiffness K,,, and the normal com-
ponent of the relative velocity v/ can be obtained by
equations (8) and (9):

Ine
= 8
P Vin?e + 72 ®)

a =Ry + Ry —|r —n]

K, = 2E*vV/R*a 9)
v:fl = (v —vy)en

where r| and r, refer to the center position vectors of
the sphere particles, n represents the normal unit vec-
tor, and e denotes the coefficient of restitution.

Furthermore, the tangential force F, and tangential
damping force F between particles can be obtained by
equation (10):

F,=— K8

Fl =2, 3K (10)
where 8, K;, and G* represent tangential overlap
amount, tangential stiffness, and equivalent shear
modulus, respectively, which can be obtained by
equation (11):

« 2=V 22 (11)
G = G11 + G22

{KS = 8G*VRa

In addition, the rolling friction of the spherical parti-
cles during the simulation can be explained by the
moment M on the contact surface, as shown in equa-
tion (12):

M=— ,U,,F,,R,-w,- (12)

To analyze the particle system, it is basically
assumed by the discrete element method that the force
and acceleration experienced by the particle are con-
stant within a time step. If the time step selected is too
large, it may lead to the numerical calculation to
diverge, therefore, the description of the inter-particle
contact is not accurate, and even the collision detection
may be missed. On the contrary, in the case of too
small time step, it may greatly increase the amount of
calculation. Therefore, it is important to choose an
appropriate time step for the simulation calculation
and analysis of the particle collision system.

The single degree of freedom system can be utilized to
calculate the iterative time step Az of the discrete element
method with its motion equation shown in equation (13):

mii(t) + ku(t) = 0 (13)

The acceleration can be obtained based on the prin-
ciple of central difference, as shown in equation (14):

it + 1)y —a(r + 1))

u(t) = A7

(14)
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Substituting equation (14) into equation (13), equa-
tion (15) can be obtain as follows:

u(t +1) + l@—Z]u(f)-l—u(t—l) =0 (15)

Then we can get equation (16):

[2 — k(A1) \/ (£ (Ar)? — 4k (At)z]
Because u(t) shows the vibration characteristics of

reciprocating motion, the solution is a complex num-
ber. Therefore, it should be satisfied with equation (17):

(16)

AWIVEETLIIS
— ] (A" —4—(A)" <0 17
(5) (@ - ap < (1)
So we can get equation (18):
2
At<2\/E = — (18)
m  w,
Due to the natural frequency of the system

w, = 2m/T, equation (18) can be changed to equation

(19):

T

At< — 19

g (19)

In the system, the minimum natural vibration period

of each unit is less than that of the system itself.

Therefore, the calculation condition of Az should be
equation (20):

T min
v

Ar<

(20)

Among them, T;,;, can be obtained by equation (21):

. m;
Tmin = 27 min ( F’)

1<isN i

(21)

In the case that the system is an under-damped sys-
tem, Atz should be calculated by using the central differ-
ence method, as shown in equation (22):

(/-9

When the maximum value wm,y 1S taken as the vibra-
tion circle frequency of system, the damping ratio is £.

Particle collision damping technology is mainly
based on the energy consumption of elastic collision
and frictions of particles. Therefore, taking two-particle
system for example, the energy consumption
during elastic collision can be calculated according to
equation (23):

At< (22)

Wmax

i -

Figure 4. The model of particle damper.

_ 1 mimy

AE, (1 -’ (23)

2my + my
where m; and m, refer to the weight of two particles, e
denotes the recovery coefficient of elastic collision, and
vl denotes the relative speed.

The friction energy consumption is calculated by
using equation (24):

AE; = p|Fyy | (24)

where u, Fy, and u represent the friction coeffi-
cient, friction between the two particles and the relative
displacement, respectively. Therefore, the energy con-
sumption of the entire system can be obtained through
equation (25):

Eppss = ZAEe + ZAE/

EDEM modeling and simulation parameter settings

(25)

The particle flow calculation software EDEM is
employed for the simulation and analysis of the particle
energy consumption of the designed particle damper.
The simulation process is mainly divided into three
parts, that is, modeling, dynamic simulation, analysis
and post-processing.

Firstly, the finite element is utilized for the model-
ing of the particle damper with the model shown in
Figure 4. Table 1?7 lists the parameter setting of the
finite element simulation which mainly includes the
contact parameters, the properties of structure, and
the materials of particles. Among them, the materials
of damper and particles are aluminum alloy and cast
iron, respectively. The contact parameters mainly
refer to the relevant parameters of aluminum alloy-
cast iron and cast iron-cast iron. The Hertz-Mindl in
(no slip) the model is selected as the contact model
due to that fact that its energy consumption mainly
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consists of elastic collision and rolling friction.
Subsequently, the dynamic simulation is performed.
The excitation type is single-direction sinusoidal exci-
tation with the vibration displacement amplitude of
I mm, the vibration frequency of 400 Hz, the time
step of 40% of the Rayleigh time step, and the grid
size of three times of the minimum radius of the
particles.

Effect of filling rate in cavity on particle energy
consumption

For the finite element model established by EDEM,
during the simulation process, particles are continu-
ously put into the container until no more particles can
be added. In this state, the number of particles in the
container corresponds to a filling rate of 100%. In addi-
tion, the vibration of particles at different filling rates
can be calculated by changing the number of particles
filled into the container. To investigate the effect of fill-
ing rate inside the cavity on energy consumption, the
excitation type is set as single-direction sinusoidal exci-
tation with the vibration displacement amplitude of
1 mm, the vibration frequency of 400 Hz, and the total
calculation time of each segment for particles with a
diameter of 1, 2, and 3mm are set to 0.1, 1, and 1Is,
respectively.

The results of simulation calculation are shown in
Figure 5(a) to (c¢) of which the left side shows the
change in the particle number with different sizes ((a) 1,
(b) 2, (¢) 3mm) over time, and the right side shows the

Table I. Simulation parameters.

Material  Density Young’s modulus  Poisson ratio

Al 2800 kg/m® 6.89¢10Pa 0.330

Fe 7850 kg/m? 2ell Pa 0.300

Contact  Rolling friction  Static friction Recovery
coefficient coefficient coefficient

Al-Fe 0.001 0.17 0.45

Fe-Fe 0.15 0.15 0.45

change in the total energy consumption in the corre-
sponding container over time.

The optimal filling rate is determined by the calcula-
tion of the energy consumption rate at different particle
filling rates. As shown in Figure 6, when the filling rate
is lower than 50%, the energy consumption rate varies
less. While when the filling rate falls into the range of
50%-70%, the energy consumption rate displays an
obvious upward trend. After the filling rate reaches to
70%, the energy consumption rate shows a steady
increase until reaching the optimal value, and then
decreases. In fact, when the filling rate reaches a certain
critical value, the gap between the particles is extremely
small, and the collision and friction between particles
become limited, which leads to the reduced energy con-
sumption efficiency. It is worth noting that in the simu-
lation process, due to the non-negligible effect of the
manually set vibration displacement on the judgment
of the optimal energy-consuming filling rate, the parti-
cles with different sizes display different optimal energy
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Figure 5. The simulation calculation results: (a) | mm, (b) 2mm, and (c) 3 mm.
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Figure 7. The influence of the vibration displacement on the optimal filling rate: (a) change of energy consumption rate with filling
rate and (b) the optimal filling rate and the energy consumption rate change with vibration displacement.

consumption filling rate. When the vibration displace-
ment amplitude reaches 1 mm, the optimal filling rate
corresponding to the particles size of 1, 2, and 3 mm is
85%—100%, 75%-97%, and 90%—100%, respectively.

Effect of vibration displacement on particle energy
consumption

Taking the particles with the diameter of 3mm for
example, the main structure of the damper is used as
the moving space of the particles. And the effects of
vibration displacement on energy consumption are
compared by changing the displacement amplitude
which is set as 1, 2-10mm (interval of 2mm), and the
filling rate is set as 30%, 50%—-100% (interval of 5%),
respectively. EDEM software is selected as the simula-
tion tool with the simulation time for each group of
0.1s.

The influence of the vibration displacement on the
optimal filling rate can be obtained according to the
simulation data with the results shown in Figure 7.
Figure 7(a) reveals the relation between the energy con-
sumption rate and the filling rate. It can be seen from

Figure 7(a) that, (i) Under different vibration displace-
ments, the energy consumption rate of particles
increases first and then decreases with the increase of
particle filling rate. (i) At the same filling rate, the
larger the vibration displacement, the higher the energy
consumption rate. (iii) The particles with smaller vibra-
tion displacement need much higher filling rate to reach
the maximum energy consumption rate. The red line in
Figure 7(a) exhibits this rule. Figure 7(b) illustrates the
optimal fill rate, and the energy consumption rate
change with vibration displacement. As shown in
Figure 7(b), with the increase of the vibration displace-
ment, the optimal filling rate of particles decreases,
while the maximum energy consumption rate increases.

Pipeline vibration reduction test

To investigate the vibration damping effect of the parti-
cle damper, a vibration table is used for the pipeline
vibration reduction test, as shown in Figure 8. It is
found that the particle damper shows a significant
vibration reduction effect when clamping it at the larg-
est vibration displacement place. Moreover, it can be
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Particle damper

Power amplifier

Test pipeline

Vibration source

Figure 8. The vibration table.

seen from the frequency sweep tests that the pipeline
has only a single formant within the frequency range
from 300 to 440 Hz. Therefore, the frequency sweep
test method is selected in this work to study the vibra-
tion damping effect at different mass filling rates, parti-
cle sizes, and structural particle dampers when the
measurement point are controlled and the position of
the damper remains unchanged. The sweep frequency
range from 300 to 440 Hz, and the acceleration excita-
tion is 1g.

Comparison of different structural unit tests

Figure 9 depicts the filling rates of different structure
unit as a function of the vibration acceleration. It can

be seen that at the filling rate of 0, the vibration accel-
eration is slightly reduced compared with the unloaded
pipeline, but this effect is lower than that of vibration
reduction at the optimal filling rate. It can be seen from
these results that the clamping damper has changed the
mass distribution of the pipeline to certain but with lim-
ited influence on the vibration acceleration. The reduc-
tion of vibration acceleration mainly depends on the
particle collision energy consumption.

The comparison of multi-unite and single-unite sys-
tems shows that the particles with the size of 1 and
2mm exhibit better vibration reduction effect than
those with the size of 3mm. Besides, the vibration
reduction effects of the multi-unite and single-unite sys-
tems are almost equivalent at the optimal filling rate,
except that the multi-unite system shows better vibra-
tion reduction effect at other filling rates.

Comparative analysis of experimental and simulation

Figure 10 shows a comparison between the test and
simulation data of the damper and those of the single
unit structure. The left ordinate (hollow curve) repre-
sents the energy dissipation rate during the simulation
process, while the right ordinate (solid curve) refers to
the vibration acceleration of the pipeline in the test. It
can be seen from Figure 10 that the filling rates of
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Figure 9. Vibration damping effect of different structures: (a) | mm, (b) 2 mm, and (c) 3 mm.
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Figure 10. The comparison between test and simulation: (a) | m
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Figure 1 1. Hydraulic power source pipeline: (a) behind and (b) front.
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Figure 12. Installation methods of particle dampers: (a)
horizontal direction, (b) vertical direction, and (c) both the two
directions.

particles with the size of 1, 2, and 3mm and good
energy consumption effect are 85%—100%, 75%—-97%,
and 90%-100%, respectively, while the corresponding
optimal filling rate under test conditions are 94.9%,
94.9%, and 97.9%. These results suggest that the filling
rate is located within the range of filling rate showing
better simulation energy consumption effect when the
minimum vibration acceleration is obtained from the
test.

Experimental study on vibration reduction
of actual hydraulic pipeline

To test the vibration reduction effect of the particle
damper designed in this paper on actual pipeline, the
particle damper is installed on a hydraulic power
source pipeline with the equipment structure shown in
Figure 11. The speed frequency of the hydraulic pump

2 =X
o =

=i 4

n |

r
&
}

B

Figure 13. Vibration damping test site.

and the pressure pulsation frequency are 25 and
175 Hz, respectively.

For the comparison of the damping effects in differ-
ent directions, the particle dampers are installed in hori-
zontal direction, vertical direction, and both directions,
respectively, as shown in Figure 12. According to
Figure 13, there are three vibration acceleration mea-
suring points, namely, X direction, Y direction, and Z
direction in the tested pipeline. The effectiveness of the
particle damper is proved by comparing the vibration
acceleration at the three measurement points.

At the working pressure of 15MPa, the vibration
acceleration signals measured from the three directions
(X—Z) before and after the installation of the particle
damper on the pipeline are shown in Figures 14 to 16,
respectively.

The comparison of Figures 14 to 16 indicates that
the particle dampers clamped in both horizontal and
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Figure 14. Comparison of vibration reduction results in X direction: (a) without damper, (b) the dampers installed in horizontal
direction, (c) the damper is installed in vertical direction, and (d) the dampers are installed in both directions.
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Figure 15. Comparison of vibration reduction results in Y direction: (a) without damper, (b) the damper is installed in horizontal
direction, (c) the damper is installed in vertical direction, and (d) the dampers are installed in both directions.
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Figure 17. Spectrum comparison of vibration acceleration: (a) X direction, (b) Y direction, and (c) Z direction.

vertical directions can achieve the best damping effect.
However, it is worth noting that the results of the instal-
lation of the damper in both directions are similar with
that of horizontal installation. The reason may lie in the
fact that when the vibration acceleration is reduced to
10g, the amplitude is not enough to cause the particles
in the damper to collide violently, resulting in the dete-
rioration of vibration reduction effect. Another possible
reason may be the setup of the damper, that is, the
setup tightness of damper and pipeline has a great influ-
ence on the vibration reduction effect. Seen from the

results of this study, the test effect of the damper is rela-
tively stable.

Figure 17 illustrates the frequency spectrum of the
vibration acceleration. It is worth noting that according
to the test results in the X and Y directions, at the fre-
quency of about 175 Hz, the vibration damping effect is
better when the particle dampers are installed in both
horizontal and vertical directions simultaneously.
Moreover, the vibration acceleration in Z direction is
lower than that of the pipeline without damper, but
higher than the vibration acceleration in X direction
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Figure 19. The point 3 at different engine powers.

and Y direction. This may be due to the fact that the
vibration in the Z direction is smaller, resulting weak
energy consumption effect.

Vibration reduction of aircraft hydraulic
pipeline

In this research, the vibration reduction test is con-
ducted on the real aircraft hydraulic pipeline when the
engine is under ground running state, thereby investi-
gating the vibration damping effect of the designed par-
ticle damper.

The particle dampers are installed at Positions 1 and
2, and the test positions are selected at the points of 3,
4, and 5, as shown in Figure 18. The vibration reduc-
tion effects at the points of 3, 4, and 5 at different
engine powers are plotted in Figures 19 to 21. The
vibration acceleration points in the Figures 19 to 21 are

Figure 21. The point 5 at different engine powers.

collected by the acceleration collector, which show the
maximum vibration acceleration. It is clearly found
that the vibration acceleration at the three measuring
points are significantly suppressed when the vibration
damper is installed. The larger the vibration accelera-
tion, the more obvious the damping effect of the vibra-
tion damper.

It is verified by the above results that the particle
damper has actual engineering vibration reduction
effect.

Conclusions

In this paper, the particle damping technique was used
in the hydraulic field. During the research, firstly, the
mechanism of particle collision damping technology
was explained. Secondly, the paper explained how to
use the discrete element method to solve the problem of
energy consumption between particles, and the analyses
of the factors that affect the energy consumption.
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Moreover, the particle damper based on particle colli-
sion damping technology was designed and manufac-
tured. In addition, the research work, such as the
particle collision simulation analysis was also imple-
mented. The specific conclusions of the whole paper
are detailed as follows:

1. Aiming at the problem of pipeline vibration
reduction, a particle damper applicable to pipe-
line vibration reduction based on the energy
consumption principle of particle collision was
designed in this work. The EDEM simulation
was in perfect agreement with the vibration test
results, and when the filling rate of particles in
the particle damper is located within the range
from 93.9% to 97.9%, the damper shows the
best vibration reduction effect.

2. The vibration reduction test results of the parti-
cle damper on the hydraulic power source pipe-
line show that the vibration of the measuring
points in the X-direction, Y-direction, and Z-
direction were obviously suppressed, which veri-
fies the effectiveness and practicability of the
particle damper.

3. The vibration reduction test results of aircraft
hydraulic pipelines at different engine powers
by using particle dampers show that the vibra-
tion acceleration at different measuring points
are all significantly reduced, and the damping
effect becomes better with the increase of the
vibration acceleration.

In conclusion, the particle damper designed in this
paper shows practical engineering damping significance
in the aspect of real aircraft pipeline damping.

However, there are still many contents which
deserve in-depth study for particle dampers. For exam-
ple, the material of the damper can be improved for
mass reduction. In addition, the temperature effect of
the particle damper may not be obvious due to the
short experimental time. However, when the damper
operates for a long time, the temperature will increase
significantly, thereby affecting the characteristics of the
material. All of the above aspects will be used as the
direction of the future research.
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