1) Check for updates

Original Article Structural Health Monitoring

Structural Health Monitoring

1-14

© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/14759217231188002
journals.sagepub.com/home/shm

Dual-input anomaly detection method
based on deep reinforcement learning
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Abstract

Aiming at the problem of low accuracy of unsupervised learning anomaly detection algorithm, a dual-input anomaly
detection method based on deep reinforcement learning was proposed. The proposed model mainly consists of a fea-
ture extractor and anomaly detector. Based on the deep reinforcement learning framework, the feature extractor uses
a dual-input deep neural network to form the current value network and the target value network, which are used to
extract the low-dimensional feature vectors. Based on the 3¢ principle, the reward function of reinforcement learning is
designed to reward and punish the output results of the model during training. The model was trained only with the
normal data, and the extracted feature vector of the normal class was used as the input of the anomaly detector to
complete the learning of the detector. During the test, the input anomaly detection was realized based on the dual-input
convolutional neural network, and the anomaly detector was completed by learning. To illustrate the generality and gen-
eralization performance of the proposed method, four sets of image data and two sets of rolling bearing fault data in dif-
ferent fields were verified respectively. At the same time, the proposed method is applied to the fault detection of a real
aero-engine rolling bearing.The results show that the proposed model has high anomaly detection accuracy, which is

superior to the current optimal method.
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As one of the universal and key components of aero-
engine, rolling bearings will increase the cost of mainte-
nance and even cause unexpected accidents once a fail-
ure occurs. Therefore, it is of great significance to
explore more accurate, more efficient, and more intelli-
gent early fault detection technology, so that the moni-
toring of aero-engine rolling bearings can be realized in
the early stage of bearing faults.'?

In recent years, signal analysis methods represented
by empirical wavelet transform (EWT), minimum
entropy deconvolution (MED), singular spectrum analy-
sis (SSA), and so on have achieved good detection
results in rolling bearing fault detection. Sawalhi et al.?
applied MED to fault diagnosis of rolling bearings and
showed that impact characteristics in fault signals of
rolling bearings could be significantly improved by using
MED. Gilles* proposed the Empirical EWT, which has
been applied to the resonance frequency band extraction
of rolling bearing fault signals.> SSA® is another power-
ful signal-processing method, which has been well
applied in rolling bearing fault detection in recent years.
To improve the detection efficiency of SSA, Bhowmik
et al.” combining with eigen-perturbation (EP) theory,

proposed an error-corrected First-order eigen perturba-
tion (FOEP)-based formulation of Real-time singular
spectrum analysis (RSSA) for adaptive filtering and ver-
ified the proposed model. At the same time, Bhowmik
et al® studied the application of first-order EP tech-
niques FOEP in structural health monitoring and veri-
fied it through experiments. Although the above
methods have achieved good detection results in rolling
bearing fault detection, however, the above methods are
mainly verified in the laboratory environment. For the
aero-engine, the working environment is more complex,
and the signal contains more noise components, so it
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still needs further verification to directly apply the above
method to the fault detection of the aero-engine rolling
bearing.

At present, with the development of artificial intelli-
gence technology in the fields of image and voice,”'”
the technology has also shone in the field of rolling
bearing fault diagnosis.'! In recent years, Deep
Learning (DL) methods such as Convolutional Neural
Network (CNN),'? Transfer Learning,'* Deep Belief
Network,'* and Autoencoder'® had been widely used
in the field of rolling bearing fault diagnosis and
obtained good diagnostic results. To be effective, such
methods typically require that the data has a similar
distribution, a comparable amount of data, and con-
tains human labels. However, in actual engineering, it
is difficult to obtain the operation data of the mechani-
cal system in the “sick” state. As a result, the obtained
samples contain a large number of normal data and
the abnormal data amount is very small or even zero
in various typical fault states. In this reality, the unsu-
pervised anomaly detection (AD)'® method driven only
by normal data has become an effective way to realize
the early AD of rolling bearing.

In recent years, researchers have proposed a variety
of AD methods, including traditional methods based
on probability and statistical theory and methods
based on DL. Traditional AD methods such as the
Support Vector Data Description (SVDD),> Hyper-
spherical Distance Discrimination (HDD), or Principal
Component Analysis (PCA), were usually used for roll-
ing bearing AD. Wang'’ used Sparse Non-negative
Matrix Factorization results as the input of SVDD, for
establishing a composite fault AD method for rolling
bearings, and realized the accurate AD of composite
faults of rolling bearings. Lin et al.'® proposed a novel
HDD method to assess the performance of aero-engine
bearings, which can solve problems with many para-
meters and high computational complexity. Liu et al."”
used PCA and the decision tree algorithm to realize the
early fault warning of civil engine rolling bearings, and
the warning rate is up to 99.8%. However, Classical
AD methods often required human experience to pro-
vide features and fail in high-dimensional samples.*°

In view of some inevitable defects of traditional AD
methods, AD based on DL has become a research hot-
spot in image, video, finance, and other fields in recent
years. Huang et al.?' proposed a novel method,
namely, memory residual regression autoencoder to
realize the AD of rolling bearings, which can achieve
97.97% and 93.51% accuracy on the IMS (Developed
by NSFI/UCR Intelligent Maintenance System Center,
University of Cincinnati, OH, USA) and XJTU-SY
(Made by Xi’an Jiaotong University, Xi’an, Shaanxi,
China) datasets. Zhao et al.** combined sparse autoen-
coder and transfer learning to propose a network

model for rolling bearing AD. To reduce the depen-
dence on manual feature extraction, Ruff et al.** pro-
posed the Deep Support Vector Data Description
(DSVDD) method by combining DL and SVDD.
DSVDD uses a CNN for feature extraction. Then, a
hypersphere describing normal samples is constructed.
When the sample falls into the sphere, it is expressed as
normal, otherwise, it is abnormal. Akcay S et al.* pro-
posed an AD method based on Generative Adversarial
Networks (GANs) and verified the effectiveness of the
method on several common datasets. Perera P et al.**
proposed a classification model based on GAN. In
addition, there are Deep AD methods based on autoen-
coders, Boltzmann machine-based methods, etc.”> Mao
et al.*® used DSVDD for early AD of rolling bearings
and achieved good results. At the same time, Deep one-
class classification neural networks (OC-NN)?’ had also
been applied in the early AD of rolling bearings.
Although the current unsupervised Deep AD methods
have achieved good results in many fields, however,
Deep AD based on unsupervised learning methods still
has room for further improvement in detection accu-
racy, and few researchers have introduced Deep
Reinforcement Learning (DRL) theory into AD.

Given this, based on the comprehensive study of the
existing DSVDD methods, this paper proposes a dual-
input AD method based on DRL (DADDRL).
DADDRL uses a dual-input DL network to extract
data features and detects the extracted features based
on traditional AD methods. The method is verified on
multiple data sets.

The novelty of this paper mainly includes the follow-
ing points:

(1) The Deep AD method and reinforcement learn-
ing are effectively integrated, and a high-precision
AD method is proposed.

(2) The method proposed in this paper is tested on
multiple real aero-engines of the same type, which
proves the effectiveness of the method proposed
in this paper, which is one of the novelties of the
method in this paper.

Related work

Before introducing the work of DADDRL, we first
briefly introduce the related Deep SVDD and DRL
methods.

Deep Support Vector Data Description

The basic principle of DSVDD is shown in Figure 1. It
uses large-scale normal training data for learning, and
obtains a DL network transformation with the weight
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Figure |. Basic principle of Deep Support Vector Data
Description (DSVDD).

of w. ¢(x;;w) maps the data representation of most
input spaces to a minimum hypersphere in the output
space. Normal and abnormal samples fall into the inte-
rior and exterior of the hypersphere after ¢ (x;; w) map-
ping. DSVDD does not need to manually label the
samples during the initial sample input and training
process. Therefore, DSVDD is an unsupervised AD
method.

¢(x;;w) in DSVDD uses a CNN model. By estab-
lishing the objective function shown in Equation (1),
the stochastic gradient descent algorithm is used to
complete the training of the network.

1 n
L=minR>+ — max{O, W) — 2—R2}
Rk D s w) —

A& 5
+§ZHWI||F
=1
(1)

Where: R and a denote the radius and center of the
hypersphere; x; denotes the i-th training sample; |||
denotes the Frobenius norm; and v and A are hyper-
parameters. The first term in the objective function
minimizes the radius of the hypersphere to make the
volume of the hypersphere as small as possible. The
second term punishes the data points falling outside
the hypersphere. The third term regularizes the net-
work weights.

Deep reinforcement learning method based on
classification Markov decision process

DRL, which combines the advantages of RL and DL,
has been favored by many scholars since it was pro-
posed. The purpose of DRL is to maximize the benefits
of agents in the process of trial and error with the envi-
ronment. Classification tasks can be regarded as
sequential decision problems of agents, which are clas-
sification Markov decision process (CMDP).® The
process is usually composed of state set S, action set 4,
decision reward R, state transition matrix P, and

Calculate actions (Label)

. Output
@é;J Action
Agent (Label
Batch samples
Experience po@
Sty It } (s.a,1,8") a

Environment

Figure 2. Classification Markov decision process.

discount factor . Firstly, it is assumed that the train-
ing data set is D = {(x1, L), (x2, ), ..., (xn, In)},
where (x;, [;) represents the ith sample x; and label /;,, N
represents the total number of samples. If the agent
correctly judges the label of the sample x; during inter-
action with the environment, the environment gives a
positive reward and vice versa. Figure 2 shows the spe-
cific process of CMDP.

The specific definitions of the relevant variables in
CMDP and Figure 2 are as follows :

State set S: The state of the environment is deter-
mined by the training sample, and the state s, at time ¢
corresponds to the z-th sample x, in the training set.
When the T-step training is completed, new training is
started after randomly disrupting the sample set D.

Action set A: The action of the agent is determined
by the label of the sample, 4 = {0, 1, 2, ..., K — 1},
where K is the number of classes of the sample. Action
a; is the label of the output after the agent accepts the
current state s,.

Decision reward R: The reward r, represents the feed-
back given by the environment after the agent performs
the action a, under the state s,, that is SXA4 — R, it is
used to reflect whether the action performed by the
agent is correct.

State transition matrix P: The state transition prob-
ability p represents the probability that the state s,
transferred to the next state s, | according to the exist-
ing training sample D after the agent executes the
action ¢, in the state s,, expressed as p(s;+1|ss, a;). Since
the training sample set D is determined in CMDP, the
state transition matrix p is determined.

Discount factor vy: ye [0, 1] is used to balance future
and current rewards. The larger the +y, the more the
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Figure 3. Dual-input deep neural network.

agent pays attention to long-term return; The smaller
the <y, the more the agent cares about immediate
interests.

Episode: Represents the transition trajectory from
the initial state s; to the termination state sy
Episode = {sy, ay, r1, $2, a2, 125 ..., S75 AT, I'T}-

Policy w(0): Indicates the mapping between the state
s, and the corresponding action «,, S — A. In this arti-
cle, agents with parameters 6 are represented 7(6).

To achieve more accurate classification, it is neces-
sary to find the optimal state-to-action mapping strat-
egy (f), and the process of exploring the optimal
strategy (f) can be realized through deep reinforce-
ment learning.

Dual-input AD method based on DRL

First, a dual-input deep neural network with an
experience pool structure is introduced. Then the
overall structure of the DADDRL model and the
calculation methods of the loss function are
introduced.

Duak-input deep neural network

The established dual-input deep neural network is
mainly composed of a dual-input feature extraction
main framework, a secondary feature extractor, an
anomaly detector, and an experience pool. The specific
structure is shown in Figure 3.

(1) Dual-input deep neural networks can use models
such as Resnet”” and Long Short-Term Memory
(LSTM).*® This paper uses a CNN with a three-
layer structure. The output results O; € R'™,
0, € R of the two networks are stacked for
secondary feature extraction.

Experience pool structure is introduced into the
dual-input deep neural network. For the batch
samples of this training, samples whose output
deviates greatly from the overall mean are stored
in the designed experience pool cache.

Anomaly detector. The extracted features Oy, O,, Os
are stacked as input to the anomaly detector (it is
worth noting that the anomaly detector does not
participate in the network training process and is
only used for testing). Different anomaly detectors
have different detection effects. The anomaly
detector used in this paper is ® SVDD detector?;
@ Gaussian Mixture Model (GMM) detector®'; ®
PCA detector’’; @ Empirical Cumulative Outlier
Detection (ECOD) detector.® For the specific algo-
rithm please refer to the relevant literatand (https://
github.com/Minqi824/ADBench).

2

(©)

Dual-input AD method based on DRL

The dual-input deep neural network that removes the
anomaly detector is used as the current value network
and target value network structure of DRL, and the
specific model structure of DADDRL is constructed as
shown in Figure 4.
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Figure 4. Structure of dual-input anomaly detection method
based on deep reinforcement learning (DADDRL).

The environment in DADDRL is mainly used to
calculate the reward value r of the result of the current
value network and the target value network; the experi-
ence pool and network structure are shown in Section
“Dual-input deep neural network”; the lossfunction
and reward value r are calculated as shown in Sections
“New loss function” and “Experience pool structure.”

New loss function

The loss function proposed in this paper mainly
includes two parts. One is the reconstruction error loss
of the output results of the current value network and
the target value network. The second is the reward loss
of two networks.

Assuming that n training samples have p features
after CNN mapping X = (X1, X, Xi3, ..., X)), 1 = 1,
2, ..., n. X obeys the distribution X~F,(p, %) with
expectation p= (g, o, 3, «--» p,p)T and covariance
matrix X.

We can use Equations (2) and (3) to calculate the
expectation p and ¥,denoted as L and 3

ﬁ:%zn:x,- 2)
i=1
3= % y X, — ) (X, — )" (3)

i=1

Dual-input deep neural network with three outputs Oy,
0, Os3. The global o and X of all n samples can be
calculated from Equations (2) and (3), denoted as
global distribution k=[f,, fi,, fis], X=[21, 22, 23]
Simultaneously, we calculate the A and 3 of the sam-
ple for the current batch size, denoted as local distribu-
tion k=[P, Py, Bsl, X=[21, 32, 33).

To make the local and the global distribution simi-
lar, the covariance matrix and the expectation should
be equal. So, we can get the sub-loss function as shown
in Equation (4)

p (4)

Where: L, is the #-th (r = 1, 2, 3) covariance matrix
error and L, is expectation error.

For the dual-input deep neural network driven only
by normal samples, we consider that its outputs O and
0, should have the same distribution, so we can get the
second sub-loss function as shown in Equation (5).

(5)

According to the established sub-loss function, we use
the maximum-minimum algorithm to calculate the
reconstruction error of the dual-input deep neural net-
work, as shown in Equation (6):

L. = min max ([I:t,l:t,l:lz,l:n]) (6)

Therefore, according to Equation (6), the loss function
of the current value network and the target value net-
work in deep reinforcement learning is shown in
Equation (7).

Ler= (LG — vLk) (7)

Where: LG, and L%, is the reconstruction error of the
current value network and the target value network. y
is the discount factor.

For reward loss, the 30 method is used to calculate
the reward value for the current output. After using
Equation (2) to calculate the global expectation . (in
this case, it is a p-dimensional vector), we calculate its
mean (3 and variance o and the mean [, of the p-
dimensional characteristics of the three outputs of a
single sample O;, O,, O3, using Equation (8) as the
reward function of DRL

[0 |a—Bl—30<0
“{1 A, — Bl — 300 (®)

After calculating the reward values of the three outputs
of a single sample through Equation (8), the actual
reward value of the network is the mean of the three.
For the current value network, it is recorded as r;, and
for the target value network, it is recorded as r,. The
reward loss is shown in Equation (9):

L= (r — yr)’ )
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The loss function used in this paper is shown in
Equation (10):

L:Lr+LCT (10)

Experience pool structure

The main function of the experience pool structure is
to store heterogeneous samples in normal samples dur-
ing training. These samples can obtain more training
opportunities by balanced cross-sampling. We use 3o
method to judge heterogencous samples during train-
ing. First, the samples with negative reward values cal-
culated by Equation (8) are regarded as heterogeneous
samples in the normal class and stored in the experi-
ence pool. Then, during training, the composition of
the batch sample is 30% from the experience pool and
70% from the original dataset. In the training process,
it is guaranteed that the two input samples selected
each time are different samples. In the detection stage,
two input samples are the same sample.

Experimental validation of image data
sets

To wverify the effectiveness and versatility of the
DADDRL method in AD, it was verified on six sets of
data sets. There are four sets of image data sets and
two sets of rolling bearing fault data sets. The informa-
tion of the four sets of image data sets is:

Mnist™ is a well-known digital recognition data set
composed of 70,000 handwritten grayscale digital
images with a size of 28 X 28. The Mnist training set
contains 60,000 samples and the test set contains
10,000 samples.

Cifar10* is a natural image dataset. The objects in
the image come from objects in daily life. It consists of
60,000 32 X 32 size 10 color images, each class of 6000
images.

Fashion-mnist;* the training set of Fashion-mnist
contains 60,000 samples and the test set contains
10,000 samples. Compared with Mnist, Fashion-mnist
is a more challenging data set. The dataset contains 10
categories, and the size of each sample is 28 X 28
grayscale images.

Street View House Number (SVHN)*’ is a real-world
digital image data set obtained from the house number
of google street view images, which consists of more
than 600,000 digital images. SVHN’s style is similar to
that of Mnist, but it comes from a very difficult,
unsolved real-world problem (identifying numbers and
numbers in natural scene images).

In the test, one of the classes is the normal class and
samples from the remaining classes are used to repre-
sent anomalies. We evaluate the results quantitatively

via Area Under Curve (AUC) measure by using ground
truth labels in testing.

The Graphics Processing Unit (GPU) used in this
paper is NVIDIA GTX1660 6G; 15-9600K processor;
the running system is Windows 10; 8G memory; the
programming language is python 3.7; the framework of
all DL models is Pytorch 1.11; the batch sample size is
256; the number of iterations is 200; using Adam opti-
mization algorithm, the learning rate is 0.001.

Effects of different data preprocessing and detectors
on the results

To verify the different data preprocessing methods, the
influence of abnormal detectors on the detection
results and the generalization performance of the
model, the DADDRL model is verified by using the
multiple anomaly detector proposed in Section “Dual-
input deep neural network™ (the calculation method of
abnormal scores in the detection process refers to the
corresponding references) and five data preprocessing
methods. The data preprocessing methods are: (1) L1-
norm; (2) L2-norm; (3) Zero-Centered (ZC); (4)
Maximum Normalization (MN); and (5) Raw Data
(RD). In the verification process y = 0.9 and the expe-
rience pool size is 2000. Each class is calculated 10
times, and then the average value is calculated as the
final result of the data set. The experimental results are
shown in Table 1.

The results show that for different anomaly detec-
tors, the AD results are not the same after using differ-
ent data preprocessing methods. Specifically, on the
four datasets, the detection accuracy of the anomaly
detector @ (ECOD) is significantly better than that of
the other three detectors. When ECOD is selected, for
the Mnist data set, the detection accuracy reaches the
maximum 97.8% after using the data preprocessing
method MN. For the Cifarl0 data set, the optimal
value is 75.5% when the data preprocessing method is
L1. The best data preprocessing methods for Fashion-
mnist and SVHN datasets are ZC and MN, respec-
tively. The results show that different data preproces-
sing methods are needed to improve the detection
accuracy for different data sets.

To show that the proposed method still has higher
detection accuracy than other methods under different
data preprocessing methods, DSVDD,** SVDD,?> Deep
convolutional autoencoder (DCAE),> Kernel Density
Estimation (KDE),"* Anomaly Detection with Generative
Adversarial Networks (ANOGAN),** OC-NN?*’ are used
for comparative verification. The specific parameters of
several methods used are consistent with the original
references. DADDRL uses an ECOD anomaly detector.
The verification results are shown in Table 2.
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Table |I. DADDRL detection results under different AD and data preprocessing methods.

Data Mnist (%) Cifar10 (%) Fashion-mnist (%) SVHN (%)

s = 0 © ® ® o o 06 ® 0 © 66 ®© 0 @ 0 @
LI 95.7 945 926 951 749 743 728 755 93.6 918 906 924 575 572 564 57.8
L2 963 954 932 96.5 623 606 578 64.1 919 915 912 92.1 579 556 521 58.9
yA® 974 96.6 953 97.7 709 689 678 71.4 928 922 913 933 618 614 582 627
MN 975 947 906 97.8 689 656 634 694 934 913 892 93.8 64.1 626 573 644
RD 973 972 946 97.6 658 665 638 67.7 915 926 914 93.3 579 563 547 58.2

AD: anomaly detection; ZC: zero-centered; MN: maximum normalization; RD: raw data; DADDRL: dual-input anomaly detection method based on

deep reinforcement learning. The bold represents the optimal detection result obtained by the current data preprocessing method.

Table 2. Detection results of various AD methods under different data preprocessing methods.

Data set Detector DSVDD SvDD DCAE KDE ANOGAN OC-NN DADDRL
Mnist (%) LI 92.5 90.8 89.4 86.8 90.9 93.7 95.1
L2 94.2 91.3 94.9 89.6 934 94.1 96.5
ZC 92.7 90.9 928 90.5 90.6 93.8 97.7
MN 95.6 91.7 91.7 89.7 924 94.6 97.8
RD 91.5 86.3 84.6 88.8 94.3 89.7 97.6
Average 933 90.2 90.7 89.1 92.3 932 96.9
Cifar10 (%) LI 64.9 64.5 59.8 65.2 63.0 62.6 75.5
L2 59.0 55.6 51.3 62.6 57.8 58.9 64.1
ZC 59.0 57.9 59.6 65.9 66.8 67.2 71.4
MN 622 55.8 61.4 63.5 66.7 63.8 69.4
RD 58.5 49.7 53.8 56.9 60.2 60.5 67.7
Average 60.7 56.7 57.2 62.8 62.9 62.6 69.4
Fashion-mnist (%) LI 90.7 79.6 89.7 784 88.9 90.2 92.4
L2 75.6 784 88.6 81.6 85.4 90.5 92.1
ZC 92.1 86.3 90.9 86.3 86.7 91.5 933
MN 91.5 81.9 92.3 80.6 88.9 88.8 93.8
RD 92.1 87.8 91.2 85.4 922 89.7 933
Average 88.6 82.8 90.5 82.5 88.4 90.1 93.0
SVHN (%) LI 543 50.3 55.2 50.6 524 52.6 57.8
L2 50.6 48.6 54.8 48.7 53.9 55.9 58.9
ZC 52.1 49.8 55.9 479 54.2 534 62.7
MN 49.6 543 53.7 50.8 53.8 52.6 64.4
RD 53.9 49.2 50.6 523 51.7 50.7 58.2
Average 52.1 50.4 54.0 50.1 53.2 53.0 60.4

AD: anomaly detection; DSVDD: Deep Support Vector Data Description; SVDD: Support Vector Data Description; ZC: zero-centered; MN:
maximum normalization; RD: raw data; DADDRL: dual-input anomaly detection method based on deep reinforcement learning.

The comparison results show that under the premise
of different data preprocessing, the detection results of
various methods are not the same. The detection effect
of DADDRL is significantly better than that of the
other methods. For example, for the Mnist dataset
DADDRL, the detection result is 96.9%, while the
result of the second-ranked DSVDD method is 93.3%,
which is 3.6% higher than DSVDD. This value reached
6.5% for the Cifar10 dataset; the result on the Fashion-
mnist dataset is 2.5%; it is 6.4% on the SVHN dataset.
It can be seen from the above statistical results that
DADDRL has stronger AD ability than the other
methods.

To further verify the generalization performance
and AD advantages of DADDRL, the L1 preproces-
sing method is used to compare the detection results of
various methods on the specific categories of Mnist
and Cafarl0 datasets. As shown in Table 3.

The results show that DADDRL has the highest
AUC value on both datasets. In terms of subdivision,
in the detection of class 0 on the Mnist dataset
DADDRL, compared with the second-ranked DCAE,
the AUC value is increased by about 2.1%; the detec-
tion of class 3 increased by about 7.1%; in the detec-
tion of class 4, the AUC value is 3.9% higher than the
second-ranked SVDD result; in the detection of class
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Table 3. Detection results of various AD methods on Mnist and Cifar |0 datasets.

Normal class DSVDD SvDD DCAE KDE ANOGAN OC-NN DADDRL
0 96.9 95.5 97.6 97.3 96.1 96.2 99.7
| 99.5 99.1 98.6 98.6 99.2 99.4 99.9
2 86.3 82.3 854 79.1 85.8 98.6 98.8
3 86.9 88.2 86.2 86.6 89.6 88.1 96.7
4 93.5 94.3 84.8 87.3 90.2 93.3 98.2
5 84.5 77.1 77.6 73.5 83.6 86.8 96.0
6 98.1 96.6 93.8 87.9 92.7 98.5 99.5
7 94.9 934 92.6 90.9 94.1 94.7 97.6
8 88.9 88.5 86.8 78.8 84.3 87.2 95.2
9 95.9 932 90.8 87.6 93.8 94.1 97.5
Airplane 65.7 61.2 59.6 614 68.7 61.2 80.1
Automobile 67.3 63.4 58.5 64.8 55.8 63.6 77.6
Bird 51.5 49.6 49.3 50.7 53.6 64.7 67.5
Cat 60.6 553 59.5 56.9 56.5 545 64.8
Deer 57.2 65.8 54.2 66.8 64.3 68.5 75.6
Dog 67.7 61.9 62.8 61.7 63.8 59.2 70.1
Frog 65.6 74.8 51.6 752 589 62.7 783
Horse 63.7 62.9 58.9 63.4 62.6 63.9 75.1
Ship 789 745 75.6 748 77.8 65.8 83.3
Truck 71.1 75.6 68.2 759 67.8 61.9 824

AD: anomaly detection; DSVDD: Deep Support Vector Data Description; SVDD: Support Vector Data Description; DADDRL: dual-input anomaly

detection method based on deep reinforcement learning.

S, the AUC value is 9.2% higher than the second-
ranked OC-NN result; compared with the second-
ranked DSVDD results, it is improved by 6.3% in the
detection of class 8. On the Cifarl0 dataset, the best
detection results of DADDRL are in the detection of
Airplan and Automobile. The results of DADDRL
reached more than 77.0%, while the results of
ANOGAN and DSVDD models were 68.7% and
67.5%, which were 11.4% and 10.3% higher than
those of Airplane and Automobile. In the detection of
normal class Horse, the result of DADDRL is 75.1%,
while the result of the second-ranked DSVDD model is
63.7%, which is 11.4% higher than that of the second-
ranked DSVDD model. In the Ship and Truck, the
AUC values of DADDRL reached 83.3% and 82.4%,
while the second-ranked results were 78.9% and
75.9%, an increase of 4.4% and 6.5%. In addition, the
accuracy of DADDRL is also improved to varying
degrees in the detection of the remaining class. The
above comparison results show that the AD accuracy
of DADDRL is significantly better than that of the
other models. It is also proved that DADDRL has
excellent AD ability.

Influence of experience pool structure and vy on
detection results

To illustrate the influence of experience pool structure
and 7 value on the detection results. Select the optimal

preprocessing method and ECOD detector correspond-
ing to each data set in Section “Effects of different data
preprocessing and detectors on the results.” The model
is verified by setting (Note EP) or without experience
pool (Note WEP) and different y values. When
v = 0.0, only the loss caused by the current value net-
work is retained in the loss function, and the influence
of each part of the loss function on the result can be
further verified by this value. The verification results
are shown in Table 4.

The results show that different y values have differ-
ent effects on the model, but as the y value increases,
the detection accuracy of the model on the three data
sets increases. It reaches its maximum when the -y value
is 0.8-0.9. When y = 0.0, the detection results on the
four datasets are the minimum, which further illustrates
that the components of the loss function proposed in
this paper are indispensable. In addition, the experience
pool structure proposed in this paper also has a certain
impact on detection accuracy. The detection accuracy
of the experience pool on the four data sets is generally
higher than that of the non-experience pool structure,
which also shows that the experience pool structure in
the model has a certain impact on the accuracy of the
model.

Rolling bearing fault data set validation

To verify the effectiveness of DADDRL in rolling bear-
ing fault detection, the fault test data sets of the aero-
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Table 4. The influence of experience pool structure and y on test results.
b% Mnist (MN) Cifarl0 (L1) Fashion-mnist (MN) SVHN (MN)

EP WEP EP WEP EP WEP EP WEP
0.0 96.1 95.1 70.4 68.6 92.1 91.5 62.5 61.7
0.1 96.2 96.0 71.6 714 92.5 91.8 63.0 62.1
0.2 96.6 95.8 72.8 70.2 92.4 91.7 63.4 62.5
0.3 96.4 95.9 733 70.3 92.8 92.0 63.4 62.8
0.4 96.8 96.4 732 71.6 929 92.2 63.8 63.2
0.5 97.1 96.5 73.8 72.2 93.1 92.1 63.6 63.6
0.6 97.2 96.3 74.6 734 93.0 92.5 64.1 62.9
0.7 97.4 97.4 74.1 729 93.4 92.7 64.0 63.7
0.8 97.9 97.8 74.3 73.2 933 93.0 64.3 64.0
0.9 97.8 97.6 75.5 73.6 93.8 92.9 64.4 63.9
0.95 97.6 97.7 74.9 73.1 93.7 93.3 64.5 64.2

EP: eigen-perturbation. The bold represents the optimal results of the structure with or without experience pool under different r, where EP
represents the structure with experience pool and WEP represents the structure without experience pool.

Vertical acceleration
measurement point
= L e

Bearing housing
acceleration
measuring point

<3

| Horizontal acceleration
measurement point

Figure 5. Acro-engine rotor tester.

engine bearing outer ring and inner ring based on cas-
ing signal are verified in the Intelligent Diagnosis and
Expert System of Nanjing University of Aeronautics
and Astronautics, and compared with the DSVDD,
OC-NN, and ANOGAN methods with better detection
results in Section “Experimental validation of image
data sets.”

The acro-engine bearing failure test based on casing
signals was performed on the platform shown in Figure
5, which was a 1:3 scale imitation of a real engine. The
test platform can effectively reflect the attenuation
characteristics of the aero-engine vibration signal in the
transmission process. The bearing model used in the
test is a 6206 single row deep groove ball bearing.
During the test, the following fault defects were pro-
cessed by electrical discharge machining (EDM) cut-
ting: cracks with a width of 6mm in the outer ring and
inner ring respectively. The specific defect diagram is
shown in Figure 6.

outer ring fault mner ring fault

Figure 6. Rolling bearing fault diagram.

The vibration acceleration sensor (B&K4805) and
NI USB9234 data collector are used in the test. The
sampling frequency is 10,240 Hz and the sample data
point is 8192. The test speed is 2400 r/min. The sensor
installation position is shown in Figure 5. The obtained
vibration acceleration signal is directly converted into
two-dimensional matrix sample data. When the algo-
rithm proposed in this paper is applied to the aero-
engine bearing fault detection based on casing signal,
only the samples in normal state are used to train the
model, and the threshold is set by the 30 method. The
samples in normal and abnormal states are tested at
the same time, and the samples larger or smaller than
the threshold range are regarded as abnormal (fault).
Sample information is shown in Table 5.

The detection results on two sets of rolling bearing
fault data sets are shown in Table 6. The results show
that the proposed method can better realize the AD of
rolling bearings, and the AD accuracy can reach 100%,
followed by DSVDD detection accuracy of 99.6%, fol-
lowed by OC-NN of 98.4%, and the effect is poor. The
ANOGAN method has an accuracy of 97.8%.
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Table 5. Bearing fault detection sample information.

Bearing state Speed (rpm) Sample size
Normal 2400 150
Outer ring fault 2400 116
Inner ring fault 2400 110

To illustrate the effectiveness of the proposed
method, the results of DADDRL are visualized, as
shown in Figure 7. The results show that the output
results of DADDRL in three states are in three differ-
ent intervals and the performance is stable. This differ-
ence also provides a basis for the fault detection of
rolling bearings by formulating relevant thresholds.

A real aero-engine rolling bearing fault
AD validation

Validation on a full-life dataset

To demonstrate the practical efficacy of the DADDRL
method, it has been validated on a real aero-engine
rolling bearing life-cycle fault data set. The aero-engine
testing was conducted in Beijing from September to
November 2021, culminating in successful completion.
The total duration of the test was about 150 h, the
sampling frequency was 200,000 Hz, the data length of
a single sample was 1 s, and the storage interval of the
sample was 3 s. During the test, the Endevco vibration
acceleration sensor was installed on the intermediate
casing of the aero-engine. The final test was stopped
due to the excessive vibration parameters of the entire
machine. After disassembly, it was found that the outer
ring of the three-point rolling bearing had serious spal-
ling. Expert analysis revealed that this fault began to
occur after approximately 120 h of use. Therefore, this
paper only uses normal class data from the first 40 h to
train the model. To reduce computation, approxi-
mately 50 groups of samples with rotation speeds
greater than 14,000 r/min were screened every hour
during verification, resulting in a total of 7010 data
samples, of which 2000 were used for training. During
the data preprocessing process, FFT is first applied to
a single sample of data. The resulting spectrum data is
then converted into a grayscale image with dimensions
of 316 X 316 X 1 (approximately 100,000 spectrum
points), which serves as the input for the model. Part of
the original vibration acceleration data and the corre-
sponding spectrum are shown in Figure 8 (to improve
the resolution, only the spectrum data in the range of
0-10,000 Hz are shown). The results show that the

Table 6. Detection result.

Fault location DADDRL DSVDD OC-NN ANOGAN
Outer ring 100 99.7 98.4 98.6
Inner ring 100 99.6 98.8 97.8

DSVDD: Deep Support Vector Data Description; DADDRL: dual-input
anomaly detection method based on deep reinforcement learning.
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Figure 7. Test results of rolling bearing data set.

spectrum of vibration acceleration also shows corre-
sponding changes as the test proceeds, mainly showing
an increase in the amplitude of the low frequency band
and a decrease in the amplitude of the high frequency
band. Figure 9 and Table 7 show the final comparison
results using various methods.

The comparative results demonstrate that
DADDRL can achieve a detection accuracy of over
98%, which is 10.36% higher than the ANOGAN
method with the highest detection accuracy among the
other three methods. These findings indicate that the
DADDRL approach is highly practical for actual fault
detection in aero-engine rolling bearings. The output
values of DADDRL and ANOGAN in Figure 9 fur-
ther verify the above conclusions. The output value of
the DADDRL method tends to be 0 in the normal
stage but is much larger than 0 in the abnormal stage,
which confirms our previous findings. However, for
most samples of ANOGAN in the fault stage, there is
no significant difference between the normal and
abnormal output values, making it difficult to deter-
mine the current operating state of the bearing. The
output difference between the two models during the
abnormal stage also indicates that DADDRL performs
better than ANOGAN.
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Figure 8. Partial raw vibration acceleration data and corresponding spectrogram: (a) vibration acceleration data at the 100th hour,
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Figure 9. Outputs of both models on real aero-engine data: (a) output of DADDRL on real aero-engine data and (b) output of

ANOGAN on real aero-engine data.

DADDRL: dual-input anomaly detection method based on deep reinforcement learning.

Table 7. Test results of rolling bearing data of an aero-
engine(%).

Fault location DADDRL DSVDD OC-NN ANOGAN

Outer ring 98.82 82.67 85.32 88.46

DSVDD: Deep Support Vector Data Description; DADDRL: dual-input
anomaly detection method based on deep reinforcement learning.

Table 8. Validation results on different aero-engines.

Aero-engine  Aero-engine |  Aero-engine 2 Aero-engine 3
(Training)
AUC(%) 98.82 100.0 100.0

Verification of model generalization performance

To further verify the effectiveness and generalization
performance of DADDRL in the fault AD of aero-
engine rolling bearings, the model trained in Section
“Validation on a full-life dataset™ is used to verify two
other aero-engines of the same type. The two aero-
engines used are three-point rolling bearing outer ring
spalling faults, and 200 sets of samples are selected for
each engine for testing. The verification results are
shown in Table 8 and Figure 10.

The results show that the trained DADDRL model
achieves 100% detection accuracy on the other two
engines. The results in Figure 10 show that the output
value of DADDRL is distributed around 0 in the nor-
mal stage, while the output value on the other two

200 - |
180 | aero-engine 1 :
160 L aero-engine 2
g 140l aero-engine 3
3 120
= 100}
g 80|
A 60F
40 ) Normal
20+
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Figure 10. Output results of DADDRL on different aero-
engines.

DADDRL: dual-input anomaly detection method based on deep
reinforcement learning.

engines is far greater than 0, and the output value on
the other two engines has the same trend. Comparing
the output value can intuitively distinguish normal and
abnormal. The results further show that the model has
strong  generalization  performance and good
practicability.

Conclusion

This paper proposes a DADDRL. Four image data
sets and two rolling bearing fault data sets in different
fields were verified respectively. The following conclu-
sions can be drawn:
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(1) Compared with the existing unsupervised AD
methods, DADDRL has higher detection
accuracy.

The detection results of various detection models
are different under different data preprocessing
methods, but the DADDRL method has the high-
est detection accuracy.

DADDRL uses two-stage detection, namely the
feature extraction stage and the AD stage. Different
anomaly detectors have different detection accu-
racy. The effect of the ECOD detector in this paper
is better than that of the other detectors.

The detection results on the rolling bearing data-
set show that bearing fault detection can be rea-
lized only by relying on the normal class samples.
The validation results on real aero-engine rolling
bearing fault data sets show that the proposed
method has strong practicability.
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