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Abstract  A dual-experience pool deep reinforcement learning (DEPDRL) model is pro-
posed for rolling bearing fault diagnosis with unbalanced data. In this method, a dual-
experience pool structure is designed to store the sample data of majority and minority classes.
A parallel double residual network model is established to extract deep features of the majority
and minority input samples, respectively. In the process of training, the proposed balanced
cross-sampling technique is used to randomly select samples from dual-experience pool in a 
certain proportion to realize the training of a double residual network model. We show the effec-
tiveness of our method on three standard data sets, and compared with Resnet18, DCNN,
DQN and DQNimb methods, the results show that DEPDRL has the best performance. Finally, 
with wavelet time-frequency graph as input, DEPDRL is applied to rolling bearing fault diagno-
sis with unbalanced test data. The results show that on a variety of unbalanced data sets, both
the diagnostic accuracy and the G-means value of the DEPDRL are more than 5 % higher than 
other algorithms, which fully indicates that the DEPDRL has a very high fault diagnosis ability of
rolling bearing with unbalanced data. 

 
1. Introduction   

The rolling bearing is an important supporting part in rotating machinery that is widely used in 
various mechanical equipment. Rolling bearing failure caused by overload, wear and other 
reasons may cause the shutdown of production of the entire mechanical equipment, resulting in 
economic losses or even casualties. Therefore, it is of great significance to effectively imple-
ment rolling bearing fault diagnosis [1]. 

At present, a deep learning method has been widely used in rolling bearing fault diagnosis 
because of its natural advantages of feature extraction and the ability to automatically establish 
nonlinear mapping from feature to type. Lei et al. [2] used deep transfer learning to accurately 
diagnose the fault state of rolling bearings. Wen et al. [3] proposed an improved deep transfer 
autoencoder and realized accurate diagnosis of rolling bearing faults. Zhang et al. [4] proposed 
a convolutional neural networks (CNN) diagnosis method based on casing detection points, 
which can well identify the fault states of rolling bearings. Guo et al. [5] proposed an improved 
convolutional neural network based on adaptive learning rate and applied it to rolling bearing 
fault diagnosis, achieving good results in fault size recognition and fault type diagnosis. Zhang 
[6] et al. proposed an improved deep belief network (DBN) algorithm and achieved good results 
in the fault diagnosis test of rolling bearings. Wang et al. [7] proposed a multi-layer supervised 
autoencoder model, which effectively improved the accuracy of fault diagnosis. Huang et al. [8] 
proposed a multi-scale cascaded convolutional neural network for bearing fault diagnosis. Hou 
et al. [9] proposed an improved stack denoising autoencoder for fault classification of rolling 
bearings, which has the characteristics of high detection accuracy and fast convergence. 
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The above rolling bearing fault diagnosis methods based on 
deep learning are all based on the premise of balanced data, 
that is, the amount of sample data of all classes participating in 
model training is basically the same. However, in practical work, 
the running time of rolling bearings in normal state is much 
longer than that in fault state, and normal samples are often 
easier to obtain, which leads to serious imbalance between 
normal and fault sample data in model training. In the diagno-
sis of unbalanced data samples, it is sensitive to most of the 
normal state data, but difficult to identify a few of the fault state 
data, resulting in a large recognition error. Therefore, studying 
the fault diagnosis of rolling bearings under unbalanced data 
has become a key technology that needs to be solved urgently 
[10]. 

At present, the classification methods for unbalanced data 
are mainly as follows: 1) Data level methods to achieve inter-
class data balance by changing data distribution; 2) Algorithm-
level methods that focus on a few types of data samples [11]. 
In the method research at the data level, Zhou et al. [12] pro-
posed an improved generative adversarial network (GAN) 
model, which extracts the features of the fault data through the 
generator and then inputs the features into the discriminator. 
The global optimization mechanism was adopted to realize the 
update of GAN. The fault diagnosis ability under unbalanced 
data is improved. Han et al. [13] put forward the algorithm of 
SMOTE (synthetic minority oversampling technique), which is a 
oversampling method that generates new samples by linear 
interpolation between a few kinds of samples. This method can 
solve the problem of low accuracy of rolling bearing fault diag-
nosis caused by unbalanced data [14]. Wang et al. [15] 
adopted down-sampling technology to reduce the sample size 
of normal data and achieve accurate diagnosis of a few types 
of fault samples by balancing the amount of data between 
classes. However, blind oversampling technique can lead to 
sample aliasing, which leads to oversampling problem. Simi-
larly, the downsampling method will cause data loss of most 
classes [16]. 

Algorithms mainly include integrated learning, cost sensitive 
learning and deep learning [10, 16]. Wu et al. [17] proposed an 
LSTM model with undersampling strategy and weighted cost-
sensitive loss function, and verified the effectiveness of the 
proposed model on unbalanced data sets. Qian et al. [18] pro-
posed a class imbalance robust network for bearing fault diag-
nosis, which can effectively solve the class imbalance problem 
in feature extraction and classification. Lin et al. [19] proposed 
a bearing fault diagnosis method based on the concept of class 
1 classification and random forest, and applied this method to 
bearing fault diagnosis with unbalanced data, achieving good 
results. It is difficult to design an appropriate cost-sensitive 
function and deal with large data samples because of the 
above method of processing unbalanced data. Therefore, Lin 
et al. [20] regarded the classification problem as a continuous 
decision problem of deep reinforcement learning and designed 
a return function for unbalanced data, which was fully verified 
on MNIST, CIFAR-10 and other data sets. Inspired by Lin et al., 

Kang et al. [21] proposed the reward function of deep rein-
forcement learning based on K-means algorithm under unbal-
anced data, and applied the proposed deep reinforcement 
learning to rolling bearing fault diagnosis with unbalanced data. 
This method is based on the idea that minority data have large 
reward and punishment values in cost-sensitive learning. 
Based on the sample imbalance ratio and manual experience, 
the model can be trained by designing a specific reward func-
tion. However, the classification method at the algorithm level 
is difficult to determine the imbalance ratio, and the cost sensi-
tive value needs to be obtained through manual experience 
[22]. 

In view of the shortcomings of classification methods in pro-
cessing unbalanced data at the present stage, a dual-
experience pool structure is proposed [23] (Experience pool 
structure is proposed by Google DeepMind team, which mainly 
stores the state, action, reward and other result data generated 
during the interaction between an agent and the environment). 
These data are used for the classification of unbalanced data 
using the dual-experience pool deep reinforcement learning 
(DEPDRL) model. The model is designed to solve the problem 
of unbalanced data classification from algorithm level and data 
level simultaneously. At the data level, the dual-experience 
pool structure and balanced cross-sampling method are used 
to classify the majority and minority samples. At the algorithm 
level, the parallel dual-residual network model is established to 
extract the deep features of majority and minority samples. 
Three sets of standard data sets of the DEPDRL model and 
two sets of rolling bearing data sets are verified, which shows 
the correctness and effectiveness of the proposed method. 

 
2. Deep reinforcement learning  
2.1 Deep reinforcement learning method based 

on classified Markov decision process 

Combining the advantages of reinforcement learning (RL) 
and deep learning (DL), It has been favored by many scholars 
since it was proposed [23]. The purpose of DRL is to maximize 
the benefit of an agent's trial and error with the environment. 
The unbalanced data classification task can be regarded as the 
sequential decision problem of an agent, which is actually the 
classification Markov process decision (CMDP) [24]. The proc-
ess usually consists of state set S, action set A, decision re-
ward R, state transition matrix P and discount factor γ. First, we 
assume that the unbalanced training dataset is D = {(x1, l1), (x2, 
l2), …, (xN, lN)}, where (xi,li) represents the i-th sample xi and 
the corresponding sample label li, and N represents the total 
number of samples. If an agent correctly judges the category 
(label li) of the current state (sample xi) during its interaction 
with the environment, the environment will give a positive re-
ward; otherwise, the environment will punish it negatively. Fig. 
1 shows the specific flow of CMDP. 

The specific definition of CMDP and related variables in Fig. 
1 is as follows: 
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State set S: The state of the environment is determined by 
the training sample. State st at time t corresponds to the t sam-
ple xt in the training set. When the T-step training was com-
pleted, the sample set D was randomly shuffled to start the 
new training. 

Action set A: The action of agent is determined by the label 
of the sample, A = {0, 1, 2, …, K-1}, where K is the number of 
class. The action is the class label of the output judged by the 
agent after receiving the current state st. 

Decision reward R: Reward rt represents the feedback 
given by the environment after the agent performs the action at 
in state st, that is, S A R× → , it is used to reflect whether the 
action performed by the agent is correct. 

State transition matrix P: State transition probability p 
represents the probability of state st transition to the next state 
st+1 according to the existing training sample D after the agent 
performs the action at under state st, and is expressed as 

1( , )t t tp s s a+ . In CMDP, as the training sample set D is deter-
mined, the state transition matrix p is determined. 

Discount factor γ: γ ∈ [0, 1] is used to balance future and 
current rewards. The larger the γ, the more the agent pays 
attention to long-term return; The smaller the γ, the more the 
agent cares about immediate interests. 

Episode: Indicates the transition trajectory from the initial 
state s1 to the termination state sT. Episode = {s1, a1, r1, s2, a2, r2, 
…, sT, aT, rT}. 

Policy ( )π θ : Indicates the mapping between the state st 
and the corresponding action at, S A→ . In this article, agents 
with parameters θ  are represented by ( )π θ . 

To achieve more accurate fault diagnosis of unbalanced data, 
it is necessary to find the optimal mapping strategy ( )π θ  from 
state to action, and the process of exploring the optimal strat-
egy ( )π θ  can be realized through deep reinforcement learn-
ing. 

 
2.2 Deep reinforcement learning method based 

on classified Markov decision process 

The specific flow of DEPDRL for the classification and diag-
nosis with unbalanced data is shown in Fig. 2. DEPDRL con-
sists of the following parts: 

 

 
 
Fig. 1. Classification Markov process decision. 

 

 
 
Fig. 2. DEPDRL. 
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1) Dual-experience pool structure (DEPS). The DEPS is 
mainly used to store <s, a, r, s’> samples generated by the envi-
ronment. One of the experience pool is called majority experi-
ence pool (Maj-EP) ,and it is used to store all the samples from 
the simulated environment. The samples diagnosed as minority 
classes and the samples incorrectly diagnosed are stored in 
minority experience pool (Min-EP), Meanwhile, the Min-EP 
stores part of the majority class samples according to a certain 
probability. The DEPS and the balanced cross-sampling in the 
training process can decompose the classification of unbal-
anced data into the recognition process of balanced data, thus 
improving the diagnostic recognition ability of the model. 

2) Double parallel residual network. The dual parallel residual 
network mainly serves DEPS, and trains the double parallel 
residual network, respectively, by sampling in the DEPS. The 
majority class network is mainly used for the recognition of the 
majority class, and the minority class network is mainly used 
for the classification of the minority class and the diagnosis of 
the error recognition samples of the majority class network. 
The final classification result is the sum of double parallel re-
sidual networks. 

3) Simulation environment. In the simulation environment, 
the unbalanced sample data set is converted into a state value 
st through sampling, and the reward and punishment function is 
set in the simulation environment to realize the reward and 
punishment of the classification results of agents (double paral-
lel residual network). 

In DEPDRL, the agent obtains the optimal strategy ( )π θ  
during the interaction with the environment. In this process, the 
strategy π  learned by the agent can be expressed as the 
probability of executing the action at in the current state st: 

 
( | ) ( , )t ta s P a a s sπ = = = . (1) 

 
The purpose of an agent is to achieve target classification as 

accurately as possible under the guidance of the strategy π . 
The more accurate the classification is, the more rewards the 
agent will get, namely, the greater the cumulative reward Gt. 
Therefore, the merits and demerits of the strategy π  can be 
measured by the cumulative reward Gt. 

 

0

k
t t k

k

G rγ
∞

+
=

=∑ . (2) 

 
In the process of judging the value of Gt, the expectation of 

Gt can reflect how well the agent performs the action at in state 
st, which is called the state action value function Q(s, a). 

 
( ) E[G | , ; ], t t tsQ s a s a aπ π= = = . (3) 

 
According to Bellman equation [25], Eq. (3) can be simplified 

as: 
 

( ) ( )1 1E [ + | , ], ,t t tt tQ s a Q sr s s a aaπ π
π γ + += = = . (4) 

To obtain the optimal strategy *π , it is necessary to calcu-
late the optimal action value function ( )* ,Q s a :  

 
( ) ( ) ( )* , * , * ,maxs a Q s a Q s a

π
π =→ . (5) 

 
The optimal action value function can be determined by Eq. 

(6): 
 

( ) ( )*
1 1E [ + max | , ]* , ,t t tt tQ s a Q sr s s a aaπ π

γ + += = = . (6) 

 
The deep residual network can be used to calculate the op-

timal action value function shown in Eq. (6). The experience 
replay technology is mainly used to sample data from the ex-
perience pool to realize network training and parameter updat-
ing. In this process, loss function as shown in Eq. (7) is used: 

 
2

, , , '
( ) E [( ( , ; )) ]i i is a r s
L y Q s aθ θ= −   (7) 

 
where, yi is the estimated value of the target, as shown in Eq. 
(8); iθ  is network parameters. 
 

'

'
max ( ', '; )i ia

y r Q s aγ θ= +   (8) 

 
where, ', 's a  are the state and action at the next moment. 
Since the network adopts the asynchronous update strategy in 
the training process (the parameters of the Q network are cop-
ied to the target Q network in step E of the Q network training), 
the network parameter values of the target Q network and the 
Q network are different. Therefore, the target Q network pa-
rameter in Eq. (8) is expressed as '

iθ . 
According to the loss function, the gradient of network pa-

rameters is calculated to complete the update of network pa-
rameters iθ , as shown in Eq. (9): 

 

, , , '

( ) ( , ; )2 E [( ( , ; )) ]i i
i is a r s

i i

L Q s ay Q s aθ θθ
θ θ

∂ ∂= − −
∂ ∂

. (9) 

 
2.3 Reward function 

At present, the reward function for deep reinforcement learn-
ing is mainly sparse reward, as shown in Eq. (10). 

 
1

=
1

t t

t t

a l
r

a l
=⎧

⎨− ≠⎩
  (10) 

 
where, at is the predictive output of the agent; it is the class 
label. 

By using the reward function shown in Eq. (10), the environ-
ment gives the same reward to all the correctly classified sam-
ples of the agent, and the same punishment to the incorrectly 
classified samples. As a result, the same punishment reward 
value is always used in the training process, which slows the 
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convergence speed of the algorithm and even makes it difficult 
to converge. In view of this, a new reward and punishment 
function with disturbance factor is designed on the basis of Eq. 
(10), as shown in Eq. (11): 

 
1

2

1
=

1
max( , )

t t

t t
t t

t t

a l
r a l

a l
a l

η

η

− =⎧
⎪ −⎨− − − ≠⎪
⎩

  (11) 

 
where, 1η  and 2η  are random numbers between [0, 0.1]. 

 
2.4 Balanced cross sampling 

In the course of training, Maj-EP stores all samples gener-
ated by the environment, while the Min-EP stores the minority 
samples. If the sample in Min-EP is directly used for the train-
ing of minority class network, this will undoubtedly lead to net-
work model over-fitting, so as to make the network generaliza-
tion ability insufficient. We propose a method called balanced 
cross-sampling to solve this problem. The main steps of this 
method are as follows: 

1) Set the batch sample size to BatchSize. 
2) Calculate the ratio of minority class to the total number of 

class: 
 

Uw U J
J

= <  

 
where, J and U are the total number of class and the number 
of minority class in this data set. 

3) Randomly select N1 = f (BatchSize*w) from a Min-EP. 
Where f(*) is the rounded function. 

4) The number of randomly selected samples from the Maj-
EP is 2 1N BatchSize N= − . 

5) Recombine samples N1 and N2 into batch samples with a 
new BatchSize. 

Through the above process, the batch samples of minority 
class network are sampled. The collected batch samples bal-
ance minority class and majority class, so that the network can 
be trained according to the normal algorithm process. 

 
2.5 Deep residual network 

Residual structure can effectively solve the problem of over-

fitting model with the increase of network depth [26, 27]. There-
fore, deep residual network is chosen as the recognition net-
work of agent. Meanwhile, to meet the design requirements of 
Q(s, a), the output part of deep residual network is redesigned. 
The improved network structure is shown in Fig. 3. 

In Fig. 3, the action value at is added to the full-connection 
layer, and then the squash compression function is added to 
the output layer to prevent gradient mutation caused by exces-
sive output value, as shown in Eq. (12). Then the output of 

( ),Q s a  value is carried out. 
 

2

2

ss
v

s1 s

v s s s 0
s

v s
s

j
j

j j

j
j

=
+

≈ →

≈ → +∞

  (12) 

 
where, s is the one-dimensional vector transformed by the 
convolution result; sj is the j-th element in the one-dimensional 
vector transformed by the convolution result; vj is the j-th ele-
ment after compression. 

To improve the training efficiency and prevent the problem of 
low training accuracy caused by the network falling into the 
local optimal solution in the training process, the Adam optimi-
zation algorithm is adopted, and the learning rate shown in Eq. 
(13) is adopted in the training process. 

 
0.01 epoch 20
0.001 20<epoch 50
0.0001 50<epoch

α
≤⎧

⎪= ≤⎨
⎪
⎩

  (13) 

 
Table 1. Model parameter values. 
 

The parameter name Value 

Batch size 64 
Epoch 500 

The size of the Maj-EP 10000 

The size of the Min-EP 1000 
γ for majority networks 0.98 

γ for minority class networks 0.90 

ε -greedy 0.1 
E 100 

 

 
 
Fig. 3. Deep residual network. 
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where α  is the learning rate, and epoch is the number of 
iterations. 

In this paper, the GPU is NVIDIA GTX1660 6G; I5-9600k 
processor; 8G of memory; The operating system is Win10. The 
programming language is Python3.7. The deep learning 
framework is Pytorch1.18.0. The specific parameter values of 
DERDRL are shown in Table 1, where E is to transfer the pa-
rameters of the current value network to the target value net-
work after the current value network has been trained for a 
certain number of times. The parameter settings of double 
parallel residual network are similar to Resnet18. See Fig. 3 for 
specific values. 

 
3. Unbalanced data verification 
3.1 Experimental data set 

To verify the classification effectiveness of the proposed 
DERDRL model on unbalanced data sets, the validation is 
carried out on MNIST, CIFAR-10 and fashion-MNIST data sets 
[28], where, both MNIST and fashion-MNIST data sets (fash-
ion) contain 60000 grayscale images with 10 class of size of 
28×28. The CIFAR-10 dataset contains 60000 RGB images of 
10 class of size of 32×32×3. The class labels of all three data-
sets are integers from 0 to 9. Results of DERDRL, Resnet18, 
DQNimb [20], DCNN [22] and DQN models in this paper are 

compared under the same experimental conditions to verify the 
effectiveness of the algorithm. As shown in Table 2 is on the 
basis of the existing data, in order to facilitate comparison, the 
method of unbalanced data structure [20] is used (in accor-
dance with the ratio imbalance ρ implementation to extract data 
from the original data set as a minority class label, ρ is the goal 
of a single minority class sample size ratio of the number of 
samples and the original data set), to generate a variety of 
unbalanced data sets of custom implementations. We sam-
pled a few samples of classes with unbalanced ratio ρ from the 
samples of the class labeled 0 and 1, all the class with odd 
labels, and all the class with even labels, respectively. 

In the verification process, the output of the model is all 10 
class, that is, the unbalanced multi-classification problem, and 
the test accuracy on the test set is used to judge the classifica-
tion performance of the model. At the same time, the unbal-
anced multi-classification index G-means [29] is used to evalu-
ate the classification performance of the model. G-means takes 
any two categories ci and cj from all class, calculates the G-
mean(ci, cj) values of the two class, and then weights and 
sums all G-mean(ci, cj) values to get the G-means, as shown 
in Eq. (14).  

 

1

-mean= *

=

2-means= -mean( , )
( 1) i j

i j

Specificity

Specific

G Recall
TPRecall

T

ity

P FN
TN

TN FP

G G c c
k k ≤ ≤

=

+

+

− ∑

  (14) 

 
where, TP is the number of true positive samples, TN is the 
number of true negative samples, FP is the number of false 
positive samples, FN is the number of false negative samples; 
k is the number of class. 

 
3.2 Verification results 

Table 3 shows the test results of DEPDRL algorithm and 
other algorithms. The results in Table 3 show that DEPDRL 
performs well in all data sets and is superior to other methods 
in classification accuracy. The second method is DQNimb, 
which improves the reward function according to the imbalance 
ratio and enhances the reward intensity of the algorithm for a 
few classes. However, compared with DEPDRL, the classifica-
tion accuracy of DQNimb is lower. The classification accuracy 
of Resnet18 and DQN is almost the same, because Resnst18 
algorithm model is also used in DQN. Compared with other 
algorithms, the accuracy of DCNN model is slightly lower, indi-
cating that convolutional network is not suitable for unbalanced 
data classification directly. 

By comparing the experimental results on multiple unbal-
anced data sets, it is easy to see that DEPDRL has a high 
classification accuracy on multiple unbalanced data sets. In 

 
Table 2. Custom data sets. 
 

Training set Test set 
Data set ρ 

(%) Negative Positive Negative Positive 
MNIST 100 60000 10000 

Cifar-10 100 50000 10000 

Fashion 100 50000 10000 
10 1200 49200 2000 8000 MNIST 

(0 and1) 25 3000 50500 2000 8000 

10 1000 41000 2000 8000 Cifar-10 
(0 and1) 25 2500 42500 2000 8000 

10 1200 48000 2000 8000 Fashion 
(0 and1) 25 3000 48000 2000 8000 

10 2543 30000 5000 5000 MNIST 
(odd) 25 6358 30000 5000 5000 

10 2500 25000 5000 5000 Cifar-10 
(odd) 25 6250 25000 5000 5000 

10 3000 30000 5000 5000 Fashion 
(odd) 25 7500 30000 5000 5000 

10 2543 30000 5000 5000 MNIST 
(even) 25 6358 30000 5000 5000 

10 2500 25000 5000 5000 Cifar-10 
(even) 25 6250 25000 5000 5000 

10 3000 30000 5000 5000 Fashion 
(even) 25 7500 30000 5000 5000 
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Cifar-10(0 and 1) data set when ρ = 25 %, the accuracy of 
DEPDRL algorithm is more than 6 % higher than that of 
DQNimb, reaching 69.93 %. When ρ = 10 %, the accuracy of 
the algorithm is improved by more than 8.7 % and reaches 
66.9 %. When ρ = 25 % in the fashion-MNIST (0 and 1) data 
set, the accuracy of DQNimb algorithm with better classification 
accuracy is improved by 2 %, reaching 93.62 %. When ρ = 
10 %, it increases by 3.45 %. At this time, the classification 
accuracy of MNIST data set is similar to that of other algo-
rithms, but it also keeps ahead. 

In Cifar-10 (odd) data set, when ρ = 25 %, DEPDRL im-
proves the accuracy by more than 6 %, reaching 63.8 %. 
When ρ = 10 %, it increases by more than 5 % and reaches 
51.7 %. Similarly, when ρ = 25 % in the fashion-MNIST (odd) 
data set, the accuracy of DEPDRL algorithm is improved by 
1.6 % compared with that of DQNimb algorithm with better 
classification accuracy, reaching 93.2 %. When ρ = 10 %, it 
increases by 4.9 %. At this time, the classification accuracy of 
MNIST data set is similar to that of other algorithms, but it also 
has the highest classification accuracy. 

In Cifar-10(even) data set, when ρ = 25 %, the accuracy of 
DEPDRL algorithm is 64.5 % more than 6 % higher than that of 
DQNimb algorithm. When ρ = 10 %, the accuracy is improved 
by 5.4 % to 52.7 %. In the same fashion-MNIST (even) data 
set, when ρ = 25 %, the accuracy is improved by 2 %, reaching 
92.5 %. When ρ = 10 %, the increase is 4.4 %. At this time, the 
classification accuracy of MNIST data set is similar to that of 

other algorithms, but it also has the highest classification accu-
racy. 

We report the G-means scores of different algorithms in Ta-
ble 4. The results in the table show that the G-means evalua-
tion index of DEPDRL is significantly higher than the results of 
other methods, which further indicates that DEPDRL can effec-
tively extract the features of a few types of samples in the pro-
cess of unbalanced data classification and can accomplish the 
classification task well. 

 
4. Rolling bearing fault diagnosis example 

To verify the effectiveness of DEPDRL in rolling bearing fault 
diagnosis, verification is carried out on the rolling bearing fault 
diagnosis data set of Case Western Reserve University [29] 
and the rolling bearing fault test data set of aeroengine rotor 
tester with casing [29] of Nanjing University of Aeronautics and 
Astronautics, respectively, and the results were compared with 
those of the above methods. 

 
4.1 Rolling bearing test data diagnosis of case 

western reserve university 

The driving end data set of rolling bearings from Case West-
ern Reserve University was selected. The corresponding bear-
ing model was SKF6205, and the data sampling frequency was 
12 kHz. There are four bearing states in total, including three 

Table 3. Unbalanced data test results. 
 

Test accuracy（%） 
Data set ρ 

(%) Resnet18 DQNimb DCNN DQN DEPDRL 

MNIST 100 99.7 99.6 99.3 99.2 99.7 

Cifar-10 100 91.6 88.7 83.5 85.4 94.7 
Fashiont 100 95.3 92.1 92.3 93.7 96.4 

10 95.3 96.6 94.3 95.1 98.1 
MNIST (0/1) 

25 98.2 99.2 97.1 97.1 99.6 
10 53.9 58.17 50.4 53.62 66.9 

Cifar-10 (0/1) 
25 59.6 62.4 52.6 58.2 69.6 

10 81.4 87.65 78.6 80.27 91.1 
Fashion (0/1) 

25 87.3 91.5 86.7 88.6 93.6 

10 97.3 97.9 96.8 97.4 98.7 
MNIST (odd) 

25 98.1 98.9 97.9 98.6 99.3 
10 45.7 46.6 41.3 43.8 51.7 Cifar-10 

(odd) 25 55.9 57.8 50.2 52.9 63.8 

10 85.6 86.9 82.2 84.4 91.8 Fashion 
(odd) 25 90.3 91.6 87.1 88.7 93.2 

10 97.2 98.0 97.6 97.2 98.6 MNIST 
(even) 25 97.7 98.9 97.5 97.9 99.2 

10 46.9 47.0 44.1 45.3 52.4 Cifar-10 
(even) 25 57.1 58.1 53.2 54.4 65.3 

10 85.3 86.2 83.6 84.3 90.6 Fashion 
(even) 25 89.7 90.5 85.8 88.4 92.5 
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processing defects fault and normal state of inner ring, outer 
ring and rolling body. In the process of data processing, the 
loading and non-loading conditions were considered together, 
and the training and test sets were divided in a 4:1 ratio. Then, 
the wavelet time-frequency diagram (using "Morse" wavelet) of 
the original vibration acceleration signal with sampling time of 
0.04 s (longer than the time per revolution) was directly kept as 
a PNG graphic file with size of 128×128×3, which serves as the 
input of each classification model. Fig. 4 shows the wavelet 
time-frequency diagrams of different fault categories. To simu-

late the problem of data imbalance caused by too much normal 
sample data and insufficient fault sample data in real vibration, 
the unbalanced data set was constructed by using the unbal-
anced ratio ρ. Table 5 shows the number of unbalanced data 
samples constructed according to the imbalance ratio ρ and 
the sample size under normal conditions (ρ = 100). 

We show the classification and diagnosis results of unbal-
anced fault data and normal conditions by different methods in 
Table 6. The results show that DEPDRL has the highest classi-
fication diagnosis accuracy relative to other models in the cus-
tomized unbalanced data sets. Taking ρ = 10 as an example, 
the classification accuracy of DEPDRL reaches 94.72 %, which 
is 5 % higher than that of DQNimb. In addition, compared with 

Table 4. Unbalanced datasets results of G-means. 
 

The results of the G-means 
Data set ρ 

(%) Resnet18 DQNimb DCNN DQN DEPDRL 

MNIST 100 0.996 0.992 0.993 0.992 0.995 

Cifar-10 100 0.898 0.883 0.859 0.853 0.951 
Fashion 100 0.947 0.924 0.926 0.938 0.966 

10 0.943 0.964 0.941 0.949 0.981 MNIST 
(0/1) 25 0.981 0.992 0.969 0.965 0.997 

10 0.523 0.572 0.495 0.513 0.687 Cifar-10 
(0/1) 25 0.582 0.633 0.513 0.582 0.694 

10 0.812 0.865 0.788 0.798 0.905 Fashion 
(0/1) 25 0.861 0.918 0.865 0.846 0.929 

10 0.973 0.983 0.954 0.971 0.984 MNIST 
(odd) 25 0.981 0.981 0.972 0.982 0.987 

10 0.449 0.453 0.441 0.413 0.498 Cifar-10 
(odd) 25 0.554 0.453 0.516 0.519 0.625 

10 0.837 0.864 0.837 0.816 0.901 Fashion 
(odd) 25 0.906 0.905 0.891 0.862 0.921 

10 0.971 0.977 0.962 0.972 0.981 MNIST 
(even) 25 0.978 0.981 0.973 0.980 0.988 

10 0.458 0.465 0.412 0.441 0.512 Cifar-10 
(even) 25 0.576 0.578 0.523 0.543 0.646 

10 0.842 0.853 0.826 0.831 0.901 Fashion 
(even) 25 0.889 0.894 0.839 0.878 0.916 

 

 (a) (b) 
 

 (c) (d) 
 
Fig. 4. Wavelet time-frequency diagram: (a) normal sample; (b) inner fail-
ure; (c) rolling failure; (d) outer failure. 

 

Table 5. Unbalanced test datasets. 
 

Train set Test set 
ρ 

Inner ring Outer ring Rolling fault Normal Fault Normal
100 3234 2431 3231 2828 2225 707 

25 809 608 808 2828 2225 707 

20 647 486 646 2828 2225 707 
15 485 365 485 2828 2225 707 

10 323 243 323 2828 2225 707 

5 162 122 162 2828 2225 707 
1 32 24 32 2828 2225 707 

Lable 0 1 2 3 Test 
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Resnet18 and DQN, the classification accuracy of DQNimb on 
unbalanced data is improved, because the algorithm increases 
the reward and punishment values of a few types of samples in 
the classification of unbalanced data. 

We report the statistical results of G-means evaluation indi-
cators in Table 7. The results show that DEPDRL has higher 
diagnostic accuracy in fault diagnosis of rolling bearing unbal-
anced data. It also further illustrates the validity of DEPDRL. 

We report the changes of classification accuracy of each 
model when ρ changes in Fig. 5. The results show that with the 
increase of the imbalance ratio range (ρ value decreases), the 
diagnostic accuracy of all models decreases, and the DQN has 
the largest range of change, indicating that with the increase of 
the imbalance ratio, the recognition ability of DQN model de-
creases for a few types of samples. The reduction range of 

DEPDRL is small, because the model considers the improve-
ment of the algorithm level and the balanced cross-sampling 
scheme at the data level, which enhances the recognition abil-
ity of the algorithm for minority classes and thus improves the 
classification accuracy of the algorithm. 

 
4.2 Rolling bearing fault diagnosis test of aero-

engine rotor tester with casing 

The Laboratory of Intelligent Diagnosis and Expert System of 
Nanjing University of Aeronautics and Astronautics completed 
the rolling bearing fault test on the aero-engine rotor tester with 
casing as shown in Fig. 6 (the test platform is a 1:3 scale imita-
tion of a real engine). The test platform has the ability to simu-
late the attenuation characteristics of aero-engine vibration 
signal during transmission. The single row deep groove ball 
bearing with bearing type 6206, vibration acceleration sensor 
(B&K4805) and NI USB9234 data collector were used in the 
test. The sampling frequency was 10240 Hz, the single sample 
data point was 8192, and the test speed was 1500, 1800, 2000 
and 2400 (r/min). The sensor installation position is shown in 
Fig. 6. To simulate rolling bearing faults, 6mm wide cracks 
were processed on the outer and inner rings, respectively, by 
means of edm cutting during the test, and a depression with a 
radius of 0.5 mm and a depth of 2 mm was processed on the 
rolling body [4, 29]. The specific defects are shown in Fig. 7. 

The original vibration signals were divided into test set and 
training set in a ratio of 1:4, and the time-frequency graph was 
also converted by wavelet time-frequency decomposition as 
the input of each classification model. The sample conversion 
time was 0.04 s. The unbalanced data are divided on the fault 

Table 6. Diagnosis result. 
 

Test result（%） 
ρ 

Resnet18 DQNimb DQN DEPDRL 

100 99.62 98.92 98.65 99.68 

25 89.44 92.37 87.34 96.78 
20 87.65 91.34 84.86 95.84 

15 87.36 89.94 80.97 95.71 

10 86.57 89.34 80.16 94.72 
5 82.37 85.64 78.82 91.19 

1 69.76 73.87 65.35 86.67 

 
Table 7. G-means value of diagnosis results. 
 

G-means 
ρ 

Resnet18 DQNimb DQN DEPDRL 
100 0.994 0.985 0.982 0.996 

25 0.897 0.916 0.882 0.968 

20 0.869 0.921 0.847 0.961 
15 0.853 0.897 0.815 0.951 

10 0.848 0.874 0.793 0.939 

5 0.817 0.728 0.767 0.912 
1 0.679 0.716 0.603 0.849 
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Fig. 5. Classification accuracy under different ρ. 
 

 
 

 
 
Fig. 6. Acro-engine rotor tester. 
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data set by using multiple imbalance ratios ρ. A variety of un-
balanced data sets are shown in Table 8. DEPDRL, Resnet18, 
DQNimb and DQN are used to diagnose aero-engine bearing 
faults based on casing signals, and the fault diagnosis ability of 
DEPDRL on rolling bearing unbalance fault data set was veri-
fied by comparing various algorithms. Table 9 and Fig. 8 show 
the diagnostic results of each model under different imbalance 
ratios. The results show that DEPDRL has higher diagnostic 
accuracy than other algorithms in fault diagnosis of rolling bear-
ing unbalance data based on casing detection points. Taking ρ 
= 5 as an example, the classification accuracy of DEPDRL is 
88.83 %, which is 7.15 % higher than that of DQNimb. The 
results in Table 9 and Fig. 8 also reflect that the diagnostic 
accuracy of each model decreases with the increase of the 
range of the imbalance ratio (ρ value decreases). As a whole, 
DEPDRL has higher classification accuracy in unbalanced fault 
data. The advantages of the proposed model in fault diagnosis 
are demonstrated, and the accuracy of the proposed model is 
further illustrated. 

We report the statistical results of G-means scores of differ-
ent algorithms in Table 10. The results show that for DEPDRL, 
the range of G-means scores is 0.7677-0.952, which is higher 
than other algorithms within the defined ρ values. For example, 
the value of ρ = 10 % is 0.8926, compared with 0.8437 of 
DQNimb model. An increase of 0.0489. The results show that 
relative to the rest of the model calculation results, DEPDRL G-
means scores higher, and further illustrates the DEPDRL 
method based on the site of casing in the fault diagnosis of 
rolling bearing unbalance data has more obvious advantages, 
can effectively improve the accuracy of fault diagnosis, and the 
algorithm has good generalization ability. 

 
5. Conclusions 

This paper proposes a new model, named DEPDRL, for un-
balanced data classification, which has advantages both in 
algorithm and data level. A double parallel residual network 
model is proposed. At the data level, a DEPS is proposed to 
store unbalanced data, and then the unbalanced data is trans-
formed into balanced data by balanced cross-sampling. After 
introducing the basic principle of the proposed model, we com-
pared and verified the algorithm on three kinds of data sets. 
Finally, the proposed algorithm was applied to the standard 
data set of bearing fault diagnosis and the experimental data 
set of engine casing detection points, showing the advantages 
of fault diagnosis under unbalanced data. This also fully proves 

Table 8. Failure unbalance test datasets. 
 

Train set Test set 
ρ 

Inner ring Outer ring Rolling fault Normal Fault Normal

100 6896 7376 7808 8272 5520 2068

25 1724 1844 1952 8272 5520 2068
20 1379 1475 1562 8272 5520 2068

15 1034 1106 1171 8272 5520 2068

10 690 738 781 8272 5520 2068
5 345 369 390 8272 5520 2068

1 69 74 78 8272 5520 2068

Lable 0 1 2 3 Test 

 
Table 9. Diagnosis result. 
 

Test result（%） 
ρ 

Resnet18 DQNimb DQN DEPDRL 

100 97.56 97.32 96.54 98.86 

25 91.37 93.27 89.62 95.12 
20 90.65 90.97 88.36 95.23 

15 87.23 88.33 84.68 93.28 

10 84.49 86.27 78.39 90.64 
5 79.92 81.68 73.89 88.83 

1 65.39 72.18 60.67 78.23 

 

 
Fig. 7. Fault 6206 ball bearings used in the experiment. 

 

Table 10. Diagnosis result. 
 

G-means (%) 
ρ 

Resnet18 DQNimb DQN DEPDRL 

100 0.969 0.965 0.963 0.985 

25 0.905 0.923 0.887 0.952 
20 0.901 0.906 0.863 0.941 

15 0.873 0.869 0.840 0.919 

10 0.832 0.844 0.772 0.895 
5 0.784 0.813 0.730 0.881 

1 0.636 0.718 0.582 0.767 
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Fig. 8. Classification accuracy under different ρ. 
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that DEPDRL has high diagnostic accuracy and fast conver-
gence speed, and also indicates that the network has a good 
application prospect. 
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