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Abstract  In some cases, because of the complex internal structure of the machines, the 
positions of the vibration sensors are far away from the rolling bearings, such as in an aero-
engine, causing the fault features to become extremely weak, which brings great challenge to 
the detection of rolling bearings. To address this problem, an integrated detection method is 
proposed. First, a method named MEDL is proposed to determine the optimal filter length in 
minimum entropy deconvolution (MED) to enhance the periodic fault impulse component in the 
weak signal, which accuracy is 1. After that, the MEDL is combined with variational mode de-
composition (VMD) and autocorrelation to extract fault features from strong background noise. 
A series of fault simulation experiments for rolling bearings were conducted by using an aero-
engine rotor experimental rig with casing. The results verify that the accuracy of the integrated 
detection method is 100 % in different measuring points, speeds and fault types. At the same 
time, it compared with spectral kurtosis (SK) and empirical wavelet transform (EWT). It proves 
that the integrated detection method is more robust in extracting the weak fault characteristic of 
rolling bearings from the casing signals effectively.  

 
1. Introduction   

Rolling bearings are the core parts of important mechanical equipment, such as in aero-
engines, wind turbines, automotive engines and so on, widely used in rotating machinery [1]. 
Monitoring of the running state of rolling bearings is essential. With the update of technology, 
bearing fault detection technology is gradually maturing. From the classical envelope analysis 
method [2] proposed at the earliest stage to the empirical mode decomposition (EMD) [3-5], 
wavelet analysis [6-8], and SK-based (spectral kurtosis) [9, 10] resonance band extraction 
methods, great success has been achieved, and these methods continue to be improved and 
updated [11-15].  

When the bearing raceway is damaged, such as peeling, cracking, and pitting, impact vibra-
tion is usually generated when a rolling element passes, resulting in a series of periodic or 
quasi-periodic impacts. However, these impulses are subject to interference from other vibra-
tional noises during the actual process, which makes them difficult to detect. Therefore, some 
researches focus on enhancing the impulse component in the signal, of which minimum en-
tropy deconvolution (MED) [16] is a very effective method. Sawalhi et al. [17] first demonstrated 
its effectiveness when applied to bearings fault diagnosis. They combined the MED with the SK 
and achieved a remarkable result in enhancing the impulse component. Since then MED has 
become a common diagnostic method for bearings [18, 19]. However, some shortcomings still 
exist in the MED. It tends to maximize a single large random pulse, while the method of select-
ing the size of the filter is not clearly defined. Barszcz and Sawalhi [20] show that signal kurto-
sis value is proportional to the filter length, but there is no specific method to choose the filter 
length. Many studies rely on experience to select the filter length when using MED [19-21]. To   
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improve the shortcomings in MED, McDonald et al. proposed 
maximum correlated kurtosis deconvolution (MCKD) [22] and 
multipoint optimal minimum entropy deconvolution adjusted 
(MOMEDA) [23] methods successively. Their effectiveness is 
demonstrated by the gear fault signal. But there are many pa-
rameters in MCKD that need to be pre-set. So Miao [21] pro-
posed a method of automatically selecting fault period to im-
prove MCKD to solve this problem. Similarly, MOMEDA needs 
to pre-set a prior knowledge fault cycle, which increases the 
probability of misdiagnosis, and it can extract only one cycle 
pulse at a time. Later, some researchers made some im-
provements, such as optimizing the two parameters of cycle 
and filter size by using grasshopper optimization algorithm [24] 
and kurtosis spectral entropy [25]. Ref. [23] also expanded an 
algorithm called MED adjusted (MEDA) to solve the intermittent 
problem at the first sample point in the MED, but the filter size 
was still a problem. In addition, MEDA will lose some raw sig-
nal of the same length as the filter length. 

Another aspect of signal processing, Dragomiretskiy and 
Zosso [26] proposed an adaptive signal decomposition method 
named variational mode decomposition (VMD), which is used 
to overcome the endpoint effect and modal-aliasing of EMD. It 
can adaptively decompose the signal into a certain number of 
sub-signals and has strong anti-noise ability. Many studies 
have proven that the VMD is better than the EMD-based meth-
ods in fault detection. For instance, Zhang et al. [27] used VMD 
to diagnose the fault signals of multistage centrifugal pump 
rolling bearings at different defects locations. The result of 
comparison the VMD and the EMD shows that the former is 
more outstanding. Wang et al. [28] applied VMD to extract the 
rub-impact fault features of the rotor system and demonstrated 
that the VMD has more fault signatures than the EMD and 
EWT. Satish et al. [29] extended a new bearing fault detection 
method based on VMD, correlation coefficient and Hurst index. 
Their analyses show that the VMD is superior in detecting 
faults than the EMD for acoustic signals. The performance of 
the VMD is affected by the parameters, so some have reported 
how to determine the parameters before decomposing the 
signal. For example, correlation coefficient and energy ratio are 
introduced in some papers [27, 30]. Bi et al. [31] combined with 
recursive model and energy difference tracking method to op-
timize the parameters. The optimized VMD can eliminate the 
influence of noise more accurately and quickly than the EMD. 
Gao et al. [32] employed the scale-space method to determine 
the number of the decomposed modes. Gong et al. [33] intro-
duced a tentative VMD method and used dynamic time warp-
ing to determine the mode number adaptively for three bearing 
faults detection. 

Note that vibration sensors cannot be located close to the 
bearings’ position in some cases, such as in the aero-engine; 
generally, the signals are obtained from the aero-engine casing. 
Due to the complex structure of the machines, there are many 
vibration excitation sources and heavy noises, and the trans-
mission paths cause the rolling bearing fault features weaker. 
Ref. [34] used an aero-engine rotor experimental rig whose 

structure is similar to a real aero-engine to simulate rolling 
bearing fault experiments. The vibration acceleration signals of 
the casing and the bearing housing were tested separately. 
The result shows that the effective fault signals from the fault 
vibration source transmitted from the casing attenuate nearly 
80 %. Luo [35] proposed a new method called synchronous 
sampling technique combined with the envelope technique for 
aero-engine main bearing peeling detection. However, this 
method only validates the outer ring fault of rolling bearing, and 
damage detection of inner ring fault and rolling element fault 
has not been reported. And many researches for aero-engine 
rolling bearings lack a real aero-engine model with casing [36-
39]. Obviously, in this case, it is necessary to research how to 
diagnose the fault features from weak signal far away from the 
bearing’s position. 

In this paper, an integrated detection method is proposed 
for weak fault features extraction of rolling bearings from the 
aero-engine rotor casing signal. First, a factor is introduced 
into the MED to select the appropriate filter length so as to 
get the optimal output signal. Then, modes of different fre-
quency bands are separated by VMD and autocorrelation is 
used to eliminate the noise after that. Finally, the fault charac-
teristic frequency is found in the envelope spectrum. Sec. 2, 
which is a review of MED, gives the details on how to choose 
the optimal filter length. The integrated detection method will 
be in Sec. 3. The rolling bearing fault experiments are intro-
duced in Sec. 4. The weak fault features in the casing signal 
are analyzed, and the integrated detection method is verified 
in Sec. 5. Sec. 6 provides comparisons of the proposed 
method with the SK and EWT methods. Some conclusions 
are in Sec. 7 

 
2. Optimal filter size selection for mini-

mum entropy deconvolution 
For linear systems

r
H , if we know the input ry , the output 

rx can be expressed as: 
 
= *
rr rx H y  (1) 

 
where * is convolution operation. Blind deconvolution can be 
understood as finding the system

r
H and input ry in the case of 

only knowing the output rx . MED applies the principle of mini-
mum entropy to the blind deconvolution problem. It is designed 
to maximize the kurtosis of the signal while suppressing noise 
components. It can be given by: 
 

= *
rr ry f x  (2) 

[ ]1 2= ,r L Ny y y y , [ ]1 2= ,
r

L Lf f f f  and [ ]1 2= ,r L Nx x x x ,  

 
where N is the signal length, 

r
f is the finite impulse response 

filter. L is the filter length. The formula for calculating signal 
kurtosis is given by: 
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Eq. (2) can be discretized and described as: 
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According to Ref. [16], the filter can be calculated by itera-
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The output result can be obtained by cyclical iteration. For 

more information, please refer to Ref. [21]. 
A simulation signal is established to illustrate the shortage of 

MED more intuitively in application to rotating machines fault 
detection. Let observed signal is: 

 
( ) ( ) ( ) ( )= + +x t y t n t h t . (7) 

 
The signal consists of fault impulse component, noise and 

system harmonic. ( )y t represents the periodic impulse signal, 
and the fault interval is 50 sampling number as shown in Fig. 
1(a). ( )n t  represents the white Gaussian noise and mixed 
with the fault signal as shown in Fig. 1(b). The energy ratio of 
impulses to noise is 0.416. Fig. 1(c) is the observation signal 

( )x t , where:  

1 2 3( ) 0.1sin(2 ) 0.2sin(2 ) sin(2 )= + +h t f t f t f tp p p  (8) 
 

and 1 2 34 2 1 / 15= = =f f f . 
Fig. 2 plots the results of MED filtering ( )x t at the case of fil-

ter length L = 50 and L = 150. When L = 50, the periodic fault 
impulses can be seen in the output though accompanied with 
heavy noise interference. However, the situation is different at 
L = 150, MED only extracted a large single pulse, which is not 
the output we want. For rotating machinery, raising the periodic 
pulses from the weak signal is the key to detection. Therefore, 
it is imperative to determine the optimal filter length before us-
ing the MED. 

In this paper, an energy factor Lm is proposed in MED. It can 
be described as: 
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where N is the raw signal point nx is the raw signal. nLy is the 
output whose filter length is L. When the output signal ap-
proaches the periodic pulse signal, the kurtosis of the continu-
ous weak impulse signal is maximized by the filter. Therefore, 
the amplitude of the output signal on the time domain wave-
form is relatively large, and the system harmonics and noise 
are suppressed at this moment, so the energy ratio of the out-
put signal to the residual signal appears to be a larger value. 
Conversely, when the output signal is a single pulse, except for 
the impact characteristic of the larger amplitude at a certain 
time in the time domain waveform, the remaining part is the 
noise component and the output signal is less differentiated 
from the system harmonic noise; Lm  will behave as a smaller 
value. So the optimal filter length can be determined by calcu-
lating the value of Lm . 

Before calculating Lm , the range of L should be given. For 
example in the simulated signal ( )x t , Fig. 3 plots the kurtosis 
and Lm of the MED-filtered output signal from L=0 to L=500. Fig. 
3(a) shows that the larger the filter size the larger the kurtosis. 
This is consistent with the results of Ref. [20]. It is not hard to 
comprehend because MED aims to maximize the kurtosis. 
However, it is not feasible to select the filter length only by vir-
tue of the kurtosis information of the signal, because the 
change in kurtosis is not related to whether the output signal is 

 
 
Fig. 1. The simulated fault signal: (a) The fault impulse component; (b) 
noise component with fault impulse; (c) the observed signal. 

 
 

 
 
Fig. 2. The MED-filtered output signal at different filter lengths. 
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the continuous impulses. The trend of Lm is in Fig. 3(b). At 
point c, Lm has the highest value, and the values of b and e 
are very low. The filter lengths of five points in Fig. 3(b) are 50, 
152, 153, 182 and 183. The results of their MED-filtered output 
signals are shown in Fig. 4.  

It can be seen that the larger the Lm , the better the periodic 
impulse recovering effect. Compared with a, the outputs of c 
and d have less noise, and the periodic fault impulses are more 
conspicuous. But in the cases of points b and e, the outputs 
are even worse. It is remarkable that the difference between 
the filter length values of b (d) and c (e) is just 1, but their out-
puts are entirely different, which indicates that the selection of 
filter size L is a critical step in the MED. To achieve the best 
MED-filtered output, the filter length with maximum Lm will be 
considered as the optimal filter length. This method is named 

as MEDL in this paper, whose specific flow paths (Fig. 5) are 
as follows: 

(1) Initialize (0) (0,1,0 ..,0)Tf = ，  meanwhile input the raw sig-
nal ( )x t to get 0X .  

(2) Calculate the length of ( )x t and define the priori range of 
the filter length L. Set convergence errorT and the maximum 
count of iterations maxm .  

(3) According to Eq. (4), calculate ( )my  by substituting 
0X and filter coefficient ( )mf , then get the ( )1+mf by Eq. (5). 
(4) Calculate the error ( 1) ( )

4 4( ) ( ) ,m mE O f O f+D = -  4 ( )×O  
represents the result of Eq. (3).  

(5) If max<m m and D <E T , continue cyclic iteration from 
step (3), otherwise，calculate Lm . 

(6) Output the signal ( )y t when Lm reach maximum. 

 
3. The integrated fault detection method 
3.1 Review of VMD 

Variational mode decomposition (VMD) mainly includes two 
processes, establishing and solving the variational model. A 
real signal is non-recursively decomposed into the sub-signals 
pattern ku  with discrete number K. The aim of optimization is 
to minimize the bandwidth of each mode. The unilateral spec-
trum of ku can be calculated by: 

 

( ) ( )*æ ö+ç ÷
è ø

k

jt u t
t

d
p

, (10) 

 
 
Fig. 3. (a) The kurtosis of the output signal; (b) Lμ of output signal at differ-
ent filter size. 

 

 
 
Fig. 4. The MED-filtered output signals at different filter lengths. 

 

Is       maximum?

Calculate the length of       , define the priori 
range of the filter length 

Input the raw signal       , get the      , initialize 
the filter coefficients

Set filter length , convergence error    and the 
maximum count of iterations

( )x t 0X

L T
maxm

Calculate and then iterate to get( )my

(0) (0,1,0 ..,0)Tf = ，

( 1)mf +

max or E T m mD < ³

( )y t

Yes

No

( )x t

Lm

Output the signal

No

m=m+1 L=L+1

Yes

L

 
 
Fig. 5. Flowchart of the MEDL method. 
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where ( )td is Dirac delta function. The whole spectrum of each 
modal component is translated to the predicted central fre-
quency by multiplying the signal - kj te w ,where kw is the estimated 
center frequency, it is expressed as follows: 

 

( ) ( )* -é ùæ ö+ç ÷ê úè øë û
kj t

k

jt u t e
t

wd
p

. (11) 

 
The constraint variation problem is thus constructed as fol-

lows: 
 

( ) ( )
2

{ },{ } 2

*     
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min -
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u f
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w
d
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where{ } { }1, ,= × × ×k ku u u and{ } { }1, , .k k= × × ×w w w  

The quadratic penalty factora and the Lagrange multiplica-
tion operator ( )tl are introduced to solve the Eq. (12) minimi-
zation problem: 
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Eq. (13) can be solved by the alternate direction method of 

multipliers ADMM, and by searching for 1+n
ku , 1+n

kw and 1+n
kl al-

ternately. From the Ref. [26]: 
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Similarly, the central frequency constrained variational prob-

lem can be constructed, and the center frequency can be fi-
nally obtained: 
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The iterative algorithm of VMD is as follows: 
(1) Initialize{ }1ˆku ,{ }1ˆkw , { }1k̂l and n ； 
(2) According to Eqs. (14) and (15), get and update ku  and 
kw ;  
(3) 1+n

kl can be updated by: 

( ) ( ) ( ) ( )1 1ˆˆ ˆ ˆ+ +é ù¬ + -ê úë û
ån n n

k
k

f ul w l w t w w ; 

(4) if 
2 21

2 2
ˆ ˆ ˆ/+ - <å n n n
k k kk
u u u e  stop and get the output, oth-

erwise go back to step (2). 

 
3.2 The steps of integrated diagnosis method 

To extract the fault characteristics from the weak signal far 
away from the vibration source, an integrated detection method 
which combines MEDL, VMD and autocorrelation is proposed. 
Specific steps are as follows: 

Step 1： MEDL filters the raw signal and obtains the output 
signal. At the optimal filter length, MEDL can fully enhance the 
fault pulses in the raw signal, thereby eliminating the interfer-
ence of the transmission path and noise. 

Step 2： The MEDL-filtered output signal is decomposed 
into K sub-signals by VMD. These modes have different fre-
quency bands, which is helpful to find the resonance frequency 
band of fault bearing. The parameters K and α in the VMD 
are determined by energy ratio and correlation method. It will 
be introduced in the Sec. 5. 

Step 3：Autocorrelation processing is performed on each 
sub-signal, and K envelope spectra are obtained. Autocorrela-
tion has a good performance in removing the aperiodic noise, 
so that the periodic component in the sub-signal can be re-
tained. 

Step 4：The defect type is diagnosed by observing the en-
velope spectra to determine whether the corresponding fault 
characteristic frequency exists. 

 
4. Experiment  
4.1 Aero-engine rotor experimental rig 

To simulate the condition that the rolling bearing is far away 
from the sensors, an aero-engine rotor experimental rig is used. 
The rotor experimental rig is very close to a real aero-engine, 
which has a single rotor. Its typical features are as follows: (1) It 
has a multi-segment casing with a ratio of 1:3 to the real engine 
and its shape is similar to a real aero-engine; (2) The internal 

 
 
Fig. 6. Steps of the integrated detection method. 
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structure is simplified, and the rotor support structure is 0-2-0. 
Two discs with blades represent the compressor disk and the 
turbine disk, respectively, and two bearings are supported be-
tween them. The outsides of the two disks have no bearing. (3) 
The elastic support structure is adopted, and the support stiff-
ness can be adjusted to change the dynamics system. (4) The 
rotor without combustion chamber structure is driven by the 
motor. 

 
4.2 Artificial fault ball bearings 

Faulty 6206 ball bearings (see Fig. 8) were installed on the 
turbine support. The defects were artificially seeded on the 
outer race, inner race and ball, respectively. The three kinds of 
faulty bearings were processed by machine tool wire cutting to 
produce cracks. These cracks on the outer race and the inner 
race are both 0.6 mm width and 0.5 mm depth. And the crack 
on the ball is rough 1 mm diameter with 2 mm depth. 

The vibration signals were acquired from casing measuring 
point and the bearing housing measuring point, respectively, as 
shown in Fig. 9. There are two B&K4805 ICP acceleration 
sensors respectively placed on the vertical and horizontal di-

rection of the casing, one sensor on the bearing housing, 
whose sampling rate is 10.24 kHz. The data acquisition card is 
NI-USB9234 and each data is 8192 points. The 6206 ball bear-
ing main dimensions are shown in Table 1. Formulas for calcu-
lating the fault characteristic frequencies are given in Table 2. 
The rotating speeds are 1500 rpm, 1800 rpm, 2000 rpm, and 
2400 rpm. 

 
4.3 Weak fault features in the casing signal 

In Sec. 4.2, four rotating speeds were carried out. Given the 
limited space available, we selected 1800 rpm (other results 
are presented in Table 3) as an example to verify the practica-
bility of the integrated detection method. Fig. 10 shows the 

 
(a) 

 

 
(b) 

 
Fig. 7. Aero-engine rotor experimental rig: (a) Rotor; (b) structure. 

 

 
 
Fig. 8. Fault 6206 ball bearings used in the experiment. 

 

Table 1. 6206 fault bearing dimensions (unit: mm). 
 
Pitch diameter 

D Thickness Diameter of ball 
d  

Ball number 
Z 

Contact angle 
Ф 

46 16 9.5 9 0 

 
Table 2. Characteristic frequencies of rolling bearing faults. 
 

Fault type Calculation formula 

BPFO 1 cos
2 r
Z df

D
fæ ö-ç ÷

è ø
 

BPFI 1 cos
2 r
Z df

D
fæ ö+ç ÷

è ø
 

BSF 
2

1 cos
2
D d
d D

f
ì üï ïæ ö-í ýç ÷

è øï ïî þ
 

 

 
 
Fig. 9. The location of sensors.  
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time-domain waveforms of three failure modes at 1800 rpm. 
Figs. 10(a), (c) and (e) are collected from the bearing housing, 
while Figs. 10(b), (d) and (f) from the horizontal measurement 
point on the casing. Obviously, it can be seen that the fault 
signals of bearing housing have a clear impact and large ampli-
tude, but the impulses in casing signals are covered by a large 
amount of noise. There are few consecutive fault impulses in 
the time domain waveforms. 

Fig. 11 draws the envelope spectra of the signals. As can be 
seen from Fig. 11(a), BPFO is 110 Hz, and its harmonics are 

particularly obvious, but in its corresponding casing signal, Fig. 
11(b), BPFO has only a few weak harmonic components. Simi-
larly, in Fig. 11(c), BPFI exhibits 165 Hz, and with the rotor 
rotational modulation frequencies 135 Hz and 195 Hz. How-
ever, in the result of casing signal, Fig. 11(d), there is no BPFI, 
just some noisy frequencies. The same is true in the analysis 
of ball fault. Note that the even harmonics of BSF are often 
dominant, in particular in envelope spectrum [1], and with cage 
modulation frequencies. So the fault feature on the ball is 
133.8 Hz, and 23.7 Hz is the second harmonic of cage rotation 

 
 
Fig. 10. Time-domain waveforms of different faults: (a) Outer race fault; (c) inner race fault; (e) ball fault from the bearing housing; (b) outer race fault; (d) inner 
race fault; (f) ball fault from the horizontal point of the casing. 

 
 

 
 
Fig. 11. Envelope spectra of different faults: (a) Outer race fault; (c) inner race fault; (e) ball fault from the bearing housing; (b) outer race fault; (d) inner race 
fault; (f) ball fault from the horizontal point of the casing. 
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frequency which appears as the modulation frequency in Fig. 
11(e). According to the above results, the fault characteristics 
in the casing signal attenuate seriously due to the transmission 
of the path. 

 
5. The verification of integrated detection 

method 
Sec. 4.3 shows that the fault features in the casing signal are 

very weak. Next, based on the envelope spectrum analysis, 
the MEDL, VMD and integrated detection method are used to 
detect the casing signal, respectively, to compare the effect of 
the single method to reflect the superiority of the integrated 
detection method. 

 
5.1 Detecting casing signal with MEDL 

It has been demonstrated that MEDL can enhance periodic 
impulses in noisy signal at optimal filter lengths in Sec. 2. So 
MEDL was applied to the horizontal casing signals, respectively. 
The results of MEDL-filtered outputs are shown in Fig. 12. The 
optimal filter length of Fig. 12(a) is 108. Fig. 12(a) shows that 
the periodic impulses are obvious and the BPFO in Fig. 12(b) is 
also prominent. So MEDL successfully recovers the fault infor-
mation of outer race. However, as for inner race fault in Fig. 
12(c) and ball fault in Fig. 12(e), the optimal filter lengths are 28 
and 14. Although large impulse components can be observed in 
MEDL-filtered outputs, the fault characteristic frequencies can-
not be found in their envelope spectra from Figs. 12(d) and (e), 
because the inner fault and ball fault have speed modulation in 
the process of rotation, and they are seriously disturbed by 
noise. In this case, using MEDL alone does not meet the detec-
tion requirements of inner race fault and ball fault. 

5.2 Detecting casing signal with VMD 

Before applying VMD to decompose the signal, it necessary 
to predefine the parameters K anda . it may lose useful infor-
mation if K is too small. On the contrary, big K will give rise to 
worthless components which bring about wasting computing 
resource. Parameter a affects the precision of the signal. 
Therefore, we use the energy ratio and correlation method to 
select the parameters [27]. The energy ratio and correlation are 
defined as: 

 
( )
( )

2

1
2

1

=

=

=å
å

N

ii
XY N

ii

X
E

Y
, (16) 

( )( )
( ) ( )

1

2 2

1 1

=

= =

- -
=

- -

å
å å

N

i ii
XY

N N

i ii i

X X Y Y
C

X X Y Y
, (17) 

 

where N is the data length, 
1

1
=

= åN

ii
X X

N
,

1

1
=

= åN

ii
Y Y

N
. 

At 1800 rpm, the energy ratio and correlation between the 
sub-signals and the raw signals from bearing housing are 
shown in Fig. 13. The energy ratio is the sum of the ratios of all 
modes. The maximum energy mode is selected to calculate 
the correlation. Here, default parameter a = 2000 is used first 
to determine K, and then parameter a  is corrected according 
to K. As can be seen from Fig. 13(a). the energy ratio in-
creases when K<7 and then tends to be stable, which means 
the signal has been fully decomposed when K increases to a 
certain value. In Fig. 13(b), the correlation shows a step-down 
trend. After K = 8, the correlation gradually decreases and 
tends to be stable. Figs. 13(c) and (d) reflect the effect ofa on 
the energy ratio and correlation. Whena < 500, the energy 

 
 
Fig. 12. The MEDL-filtered outputs of the horizontal casing signals: (a) Outer race fault; (b) envelope of (a); (c) inner race fault; (d) envelope of (c); (e) ball 
fault; (f) envelope of (e). 
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ratio and correlation fluctuate slightly and then show a stable 
state, and the energy ratio slowly decreases. Similarly, for the 
horizontal casing signals at 1800 rpm, the variation trend of 
parameters is similar to the result of bearing housing signal. To 
make sure the signal can be decomposed adequately and 
make the modes have the highest correlation as far as possible, 

we chose K = 7, a = 1000. 
The inner race fault horizontal casing signal (Fig. 10(d)) and 

ball fault (Fig. 10(f)) casing signal were decomposed by VMD. 
The optimal result was selected by observing the envelope 
spectra from the seven sub-signals. The results are printed in 
Fig. 15. As can be seen in Fig. 15(a) there is only a suspicious 

         
                  (a)                                                  (b) 

 

        
                                               (c)                                                  (d) 
 
Fig. 13. Variation of energy ratio and correlation for different fault bearing housing signals decomposed under different parameters: (a) and (b) Energy ratio 
and correlation with different K; (c) and (d) energy ratio and correlation with different a . 

 

               
(a) (b) 

 

               
                                            (c)                                                         (d) 
 
Fig. 14. Variation of energy ratio and correlation for different fault casing signals decomposed under different parameters: (a) and (b) Energy ratio and correla-
tion with different K; (c) and (d) energy ratio and correlation with different a . 
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weak BPFI in the envelope spectrum with heavy noise. Mean-
while, there is no ball fault characteristic frequency in the enve-
lope spectrum either in Fig. 15(b). In the casing signals without 
MEDL filtering, the fault pulses covered by noise are very weak, 
which is not conducive to finding the resonance band by VMD. 
Obviously, just using the VMD method cannot identify the fault 
characteristics of the horizontal casing signal. 

 
5.3 Detecting casing signal with integrated de-

tection method 

To solve the problem of extracting weak features, MEDL is 
used to enhance the impulses and then VMD is performed. Fig. 
16(a) shows the result of inner race fault, where the BPFI (165 
Hz) is obvious, and the rotational modulation frequency also 
appears on the right side, but there are still some noises. To 
remove them to get maximum benefit, autocorrelation is ap-
plied after MEDL+VMD, namely, integrated detection method. 
The result in Fig. 16(b) shows that not only is the fault charac-
teristic frequency greatly improved, but also the noises are 
almost eliminated, and the modulation phenomenon of inner 
race fault is clearly compared with Fig. 16(a). As for rolling 
element fault, it can be clearly seen the fault characteristic 
frequency in the envelope spectra in Fig. 17. Integrated detec-

tion method can give more prominence to fault characteristic 
frequency in Fig. 17(b). Analysis above suggests that the pro-
posed method is successful. Although weak information cannot 
be captured by VMD alone, the enhancement of impulses after 
MEDL is beneficial to the separation of resonance band and 
noise. Finally, autocorrelation clears noise away. 

 
6. Comparing the integrated detection me-

thod with other methods 
6.1 Compared with the MED+SK+SES 

Spectral kurtosis (SK) method is a classical method in bear-
ing diagnosis. Refs. [17, 19] proposed a method which com-
bines the MED, SK and squared envelope spectrum (SES) to 
detect the bearings, proving that it is very effective in detecting 
weak faults. Formally, it is similar to the integrated detection 
method. So MED+SK+SES is used to detect the horizontal 
casing signals to compare with the integrated detection method.  

Fig. 18 plots the result of inner race fault. To make it fair, the 
filter size is the same as before. The frequency band in Fig. 
18(a) with the highest kurtosis is 4480 Hz and the bandwidth is 
1280 Hz in level 2, but in its squared envelope spectrum, Fig. 
18(b), there is no BPFI. The situation in the result of rolling 
element fault is not better than inner race fault. The frequency 

 
                                             (a)                                                      (b) 
 
Fig. 15. The result of horizontal case signal by VMD: (a) Inner race fault; (b) ball fault. 

 
 

 
                                            (a)                                                     (b) 

 
Fig. 16. The envelope spectrum of the horizontal casing signal for inner race fault: (a) The result of MEDL+VMD; (b) the result of the integrated detection 
method. 
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band in Fig. 19(a) with the highest kurtosis is 3520 Hz, and the 
bandwidth is 640 Hz in level 3. In the squared envelope spec-
trum as shown in Fig. 19(b), there are no frequency compo-
nents associated with fault characteristics. SK method is very 
sensitive to the impact of large kurtosis. After using MED, the 
impacts in the signals are improved, but from Figs. 12(c) and 
(e) there are still some large interference noises. SK method 
can easily locate the resonance frequency band to the interfer-
ence noise. So the results are not satisfactory. Therefore, the 
diagnostic effects of MED+SK+SES are not good when the 
sensors are away from the bearing. 

6.2 Compared with EWT 

Empirical wavelet transform (EWT) [40] as a new method 
also has good performance for signal decomposition, and it 
has proven to be very effective in detecting the fault features of 
rolling bearings [41]. As for integrated detection method, for the 
same casing signal, if other steps change nothing but replace 
the VMD method with the EWT method in the step 2, we can 
compare the applicability of the two integrated detection meth-
ods. In this part, we used the EWT method provided in Ref. 
[40] for comparison. For more detailed process of EWT, please 

 
                                              (a)                                                     (b) 
 
Fig. 17. The envelope spectrum of the horizontal casing signal for ball fault: (a) The result of MEDL+VMD; (b) the result of the integrated detection method. 

 

 
                                             (a)                                                  (b) 

 
Fig. 18. The result of MED+SK+SES for the inner race fault of horizontal casing signal: (a) Kurtogram; (b) the squared envelope spectrum. 

 

 
                                              (a)                                                 (b) 
 
Fig. 19. The result of MED+SK+SES for the ball fault of horizontal casing signal: (a) Kurtogram; (b) the squared envelope spectrum. 
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refer to it. 
Similarly, selecting horizontal casing signal at 1800 rpm, Fig. 

20(a) plots the spectrum of MEDL+EWT for inner race fault. It 
presents a weak BPFI; after autocorrelation in Fig. 20(b), the 
situation has improved. In the spectrum, BPFI is clear as well 
as the rotational modulation frequencies, but the result of VMD 
integrated detection method in Fig. 16(b) is better. However, for 
ball fault, the fault characteristic frequency is inconspicuous, 
whether in Fig. 21(a) or Fig. 21(b). Obviously, the VMD inte-
grated detection method is superior to EWT integrated detec-
tion method in extracting weak fault features. 

Table 3 gives the result of two integrated detection method 

for different fault at all test rotating speeds. The diagnostic ef-
fect is divided into Good (G), which represents that the bearing 
fault characteristic frequency can be significant highlighted, for 
example, Fig. 16(b); Normal: (N), indicating that the bearing 
fault characteristic frequency can be clearly seen, but the result 
is not as good as ‘G’ grade, such as Fig. 20(b); Bad: (B), indi-
cating the fault feature cannot be found, such as Fig. 21(b).  

Table 3 illustrates that VMD integrated detection method can 
extract fault features in almost all cases, while EWT integrated 
detection method loses its detection ability in the case of ball 
failure, which indicates that VMD integrated detection method 
has excellent performance in extracting weak faults from the 

Table 3. Comparison of two integrated detection method. 
  

Vertical measuring point Horizontal measuring point 
Inner race fault Outer race fault Ball fault Inner race fault Outer race fault Ball fault 

Rotating 
speed/rpm 

VMD EWT VMD EWT VMD EWT VMD EWT VMD EWT VMD EWT 
G N G G N N G N G G N B 

1500 
137 Hz 92 Hz 118 Hz 136 Hz 91 Hz 118 Hz 

N B G G N N G G G G G B 
1800 

165 Hz 108 Hz 136 Hz 165 Hz 110 Hz 134 Hz 
G N G G G B G B G G G B 

2000 
182 Hz 120 Hz 156 Hz 182 Hz 121 Hz 156 Hz 

G N G G G B G N G G N B 
2400 

220 Hz 144 Hz 181 Hz 220 Hz 143 Hz 183 Hz 

 

 
 (a)                                                     (b) 

 
Fig. 20. The envelope spectrum of the horizontal casing signal for inner race fault: (a) The result of MEDL+EWT; (b) the result of EWT integrated detection method. 
 

 
                                               (a)                                                   (b) 
 
Fig. 21. The envelope spectrum of the horizontal casing signal for inner race fault: (a) The result of MEDL+EWT; (b) the result of EWT integrated detection method. 
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signal far away from the fault source.  

 
7. Conclusions 

In this paper, an integrated detection method is proposed for 
weak fault features extraction of rolling bearings from casing 
signals which combines MEDL, VMD and autocorrelation 
methods. It enhances the impulse component of weak signals, 
removing irrelevant interference components, and makes full 
use of the decomposition ability of VMD. Three different faults 
are successfully detected from the casing signal. It can be 
summarized as follows:  

(1) The fault experiments of rolling bearings were simulated 
by an aero-engine rotor experimental rig at different rotating 
speeds. The transmission path weakens the fault features in 
the casing signals.  

(2) To avoid the problem of enhancing single impulse in MED, 
a factor Lm is proposed to determine the optimal filter length, 
which aims to maximize periodic fault impulses. The MEDL is 
verified by the simulation signal, and MEDL can enhance the 
weak fault impulses in the casing signals and successfully 
extract the fault characteristics of the outer race fault, but it fails 
in the situations of the inner race fault and the ball fault. Just 
using VMD method cannot identify the fault characteristics of 
the casing signal, either.  

(3) Compared with integrated detection method, the results 
show that the MED+SK+SES method cannot extract the weak 
fault information when the sensors are far away from the bear-
ing. Besides, EWT integrated detection method is used for 
comparison, but it fails to extract ball fault feature in most cases.  

It is noteworthy that parameters need to be predetermined in 
the integrated detection method. In this work, the selection of 
VMD parameters has not been automated. Therefore, In the 
following work it is necessary to study parameter auto-
optimized method to achieve fast integrated diagnosis. 
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