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Abstract  Aiming at the limitation of early fault warning and the diagnosis of aero-engine 
main bearing when there are only normal operation data, a rolling bearing fault evolution state
indicator based on deep convolutional neural network (CNN) and wavelet analysis was pro-
posed. To be specific, firstly, the wavelet band envelope method was adopted to identify the
early fault evolution process, and the feature distance between the degraded data and the
normal ones was extracted by using deep CNN to develop the evolution state indicator. Then,
the evolution stages were divided by using unsupervised clustering method. Finally, the remain-
ing useful life (RUL) was predicted based on particle filter (PF). Three different groups of whole 
life cycle data of rolling bearings under various working conditions were used to prove the fea-
sibility of the indicator. The results show that the wavelet-CNN features of completely different 
fault data show similar evolution trends, and the normalization of warning threshold can be 
realized based on the train labels. In conclusion, the results are of great significance for the
early fault evolution monitoring, condition evaluation and remaining useful life prediction of roll-
ing bearings without the absence of fault samples under actual aeroengine operation. 

 
1. Introduction   

Data driven is one of the most widely used methods for the condition monitoring and diagno-
sis of rolling bearings of aero-engine. It is popular to use the monitoring data during bearing 
operation to develop the condition indicator, determine the failure threshold, establish the evolu-
tion monitoring model, and realize the condition evaluation of rolling bearing [1-3]. However, 
there are currently some key points and difficulties in the researches based on this method, 
such as the inaccessible real fault samples in actual operation, the poor generalization ability of 
diagnostic models, the lack of scientific standards in defining failure thresholds, and the limita-
tion in identifying early weak faults. 

A series of related researches have been conducted to solve the main problems, such as the 
fault detection based only on normal samples, the definition of failure threshold, the prediction 
of remaining useful life, etc. Lin et al. [4] proposed a rolling bearing fault detection method 
based on hypersphere optimization support vector data description, improving the spatial distri-
bution of feature vectors through hypersphere optimization, and realizing bearing fault detection 
based only on normal data with high accuracy. Islam et al. [5] defined the health index based 
on the defect degree of rolling bearings, and applied a class of least squares support vector 
machine models assisted by Bayesian reasoning (Bayesian-OCLSSVM) for anomaly detection 
to determine the prediction starting point and fault threshold. Luo et al. [6] proposed a method 
based on continuous wavelet transform (CWT) and convolutional automatic encoder (CAE) to 
extract deep features related to bearing degradation, and used self-organizing mapping (SOM) 
method to obtain degradation indicators. Zhou et al. [7] developed unsupervised health indica-
tors (HI) by using Gaussian mixture model (GMM) and Kullback Leibler divergence (KLD), and 
achieved continuous prediction of unknown HI based on a new reinforced memory gated re-
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cursive unit (RMGRU) network. In the optimization of feature 
extraction model based on rotary machines, Iqbal and Madan 
[8] proposed a convolution neural network model with vibration 
and acoustic signature, which realized the early real-time fault 
diagnosis of computer numerical control machine. The pro-
posed method has obtained very high classification accuracy, 
and has prominent advantages over traditional machine learn-
ing models. Choudhary et al. [9] presented a non-invasive 
thermal image-based method for bearing fault diagnosis based 
on CNN model, which automatically identified the faults and 
attained 99.80 % classification accuracy and outperformed 
ANN. 

However, in the existing studies, it is still difficult to define the 
alarm threshold of rolling bearing, and apply the model or 
threshold based on a specific data set well to other bearing 
data. Though there are sufficient methods for rolling bearing 
fault diagnosis, the researches of early warning technology of 
rolling bearing are relatively rare. Therefore, it is crucial in early 
warning, status evaluation and life prediction of rolling bearing 
to build a suitable health status indicator which can be used to 
timely detect the spalling fault and evolution status of rolling 
bearing in different stages, that is, to extract fault features 
submerged by a large amount of noise from vibration signals. 

Deep learning method, receiving extensive attention at pre-
sent, exhibits great advantages in the adaptive extraction of 
deep features, which can be used to unify failure thresholds of 
different bearings based on training labels. In this case, a roll-

ing bearing fault evolution state indicator based on deep learn-
ing is proposed, which is obtained by training a deep convolu-
tion neural network with normal stage data of rolling bearing. 
For the vibration signal of rolling bearing in the healthy state, 
the status indicator can be normalized to the value of about 0.5. 
As bearing fault progresses, the value of the status indicator 
increases monotonically. When the index reaches certain value, 
similar between different bearing data, the degradation or fail-
ure of bearing can be determined. Finally, through the features 
reflected by the status indicator, the remaining useful life of 
rolling bearing is predicted by using the particle filter method. 

 
2. Basic principle and process of fault evolu-

tion state indication and RUL prediction of 
rolling bearings 

Firstly, the detail envelope signal of rolling bearing is ob-
tained based on wavelet transform and autocorrelation analysis. 
The high-frequency detail signals in the normal stage are se-
lected and input into the convolutional neural network for train-
ing, and the corresponding evolution feature extraction model 
is obtained. Then, the whole life cycle data are input into the 
trained network. The evolution characteristic curve is extracted 
adaptively based on the feature distance between the degrada-
tion sample and the normal one. After that, the fault evolution 
stages are divided, and the thresholds are determined by using 
unsupervised clustering method. Rolling bearings of different 

 

 
 
Fig. 1. Fault evolution state indication and RUL prediction of rolling bearings. 
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types and under diversified working conditions show similar 
evolution characteristic curves and highly consistent degrada-
tion and failure thresholds. Using particle filter jointly, the RUL 
of rolling bearings are gradually tracked and predicted. At last, 
the feasibility of the method is verified based on three groups of 
experimental data. The process of fault evolution state indica-
tion and RUL prediction of rolling bearings is shown in Fig. 1. 
The main innovation points involved in this paper are as fol-
lows: 

1) The deep CNN model is trained based on the normal op-
eration data of rolling bearing only, which better suits the actual 
situation. With the gradual input of the fault evolution data into 
the model, the feature value of the model output rises mono-
tonically, which is regarded as the bearing fault evolution state 
indicator. 

2) The features extracted from CNN model of bearing data of 
different types and under diversified working conditions show 
similar evolution trends, and the high consistency of alarm 
threshold can be achieved based on training labels, thereby 
providing a reliable basis for general diagnosis between differ-
ent rolling bearings. 

3) The high-frequency detail signal based on wavelet enve-
lope analysis is more sensitive to the vibration of early faults. 
Therefore, the combination of wavelet-CNN and particle filter 
for rolling bearing RUL prediction is of great significance for the 
early evolution monitoring and condition evaluation of rolling 
bearing under the new working condition with insufficient fault 
samples. 

 
3. Introduction of datasets 

Since it is difficult to obtain the real rolling bearing fault data 
of aero engine, the data from different test rigs similar to aero-
engine working principles are collected and analyzed to de-
velop a unified threshold state indicator and realize early fault 
diagnosis and RUL prediction. Three groups of data from roll-
ing bearing test rigs are used in this paper. And the bearing 
fault data used in Test 1 is from the intelligent maintenance 
systems (IMS), University of Cincinnati, USA, while the data of 

tests 2 and 3 are from the Intelligent Diagnosis and Expert 
System Research Office (IDES), Nanjing University of Aero-
nautics and Astronautics, China. 

 
3.1 Intelligent maintenance systems (IMS) data-

set 
The rolling bearing fatigue test rig is shown in Fig. 2. The roll-

ing bearing used in the test is Rexnord ZA 2115 (made by Re-
gal Rexnord Ltd, USA), of which the model parameters are 
shown in Table 1. Four identical bearings were used during the 
test with the test speed of 2000 rpm. Each bearing was under 
the load of 26.67 kN and sufficient lubrication. The sampling 
frequency was 20480 Hz, the data were stored every 10 min-
utes, and the length of each sample was 20480. The effective 
duration of the test was 163 hours, and finally the no. 3 bearing 
received a single-point fault in its outer ring. Fig. 3. shows the 
appearance of the fault bearing. 

 
3.2 Intelligent diagnosis and expert system (IDES) 

dataset 
Tests 2 and 3 were carried out on the HRB 6026 and the 

BMD 6009 single-row deep-groove ball rolling bearings by 
using the AB-LT1A bearing life enhancement testing machine. 
The main parameters of the two bearings are shown in Table 2, 
and the test rig and the loading diagram are shown in Fig. 4. 
For the test on the HRB 6206 bearings, the constant speed 
was 11500 rpm. Each of the four bearings was under the load 
of 6.25 kN and sufficient lubrication. The test sampling fre-
quency was 32k Hz, and the samples were stored every 10 
minutes. After the operation of 30 hours, the test was termi-
nated due to excessive vibration. The spalling fault occurred on 

 
Table 1. Main parameters of ZA-2115 rolling bearing. 
 

Model Pitch diameter Contact angle Ball diameter Number of balls

ZA-2115 71.5 mm 15.17° 8.4 mm 16 

  

 
 (a) Test rig  (b) Loading diagram 
 
Fig. 2. Rolling bearing fatigue test rig and loading diagram. 
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the inner ring, as shown in Fig. 5(a). 
For the test on the BMD 6009 bearings, the constant speed 

was 12000 rpm. Each of the four bearings bears a radial load 
of 5.1 kN and an axial load of 1.2 kN at the same time. The test 
sampling frequency was 32 kHz, and the samples were stored 
every 2.5 minutes. After the operation of about 240 hours, the 
test was terminated due to excessive vibration. The spalling 

fault occurred on the inner ring, as shown in Fig. 5(b). 

 
4. Development of deep learning condition 

indicator (DLCI) of rolling bearing 
4.1 Extraction of high-frequency envelope signal 

of rolling bearing based on wavelet analysis 
The fault evolution process of rolling bearing shows certain 

regularity in high-frequency band (above 20 kHz), medium-
frequency band (1 kHz-20 kHz) and low-frequency band (be-
low 1 kHz). Taking the life cycle data of ZA-2115 bearing as an 
example, Fig. 6 shows the four typical stages of rolling bearing 
fault evolution in frequency domain. 

It can be seen that the fault evolution of rolling bearing is an 
energy migration process from high frequency to low frequency, 
covering the whole frequency band at last. Early faults are 
usually reflected more in the high frequency band. Wavelet 
analysis [10] can be used to obtain the rolling bearing fault 
signal energy in each energy band through wavelet band de-
composition, envelope analysis and autocorrelation analysis. It 
is also available to reflect the evolution process of the fault, 
especially the detail signal in the high frequency band which is 
more sensitive to the evolution of early faults. In this paper, to 

Table 2. Parameters of HRB 6206 and BMD 6009 rolling bearings. 
 

Model Bore diameter Outer diameter Width Diameter of balls Pitch diameter Number of balls Contact angle

HRB 6206 30 mm 62 mm 16 mm 9.5 mm 46 mm 9 0° 

BMD 6009 45 mm 75 mm 16 mm 8.7 mm 60 mm 12 0° 

 

 
 
Fig. 3. Outer ring damage of ZA-2115 bearing. 

 

 
(a) Test rig  

 

(b) Loading diagram 
 
Fig. 4. ABLT-1A test rig and loading diagram. 

 
(a) HRB 6026  

 

 
(b) BMD 6009 

 
Fig. 5. Inner ring damages of HRB 6206 and BMD 6009 deep groove ball 
bearings. 
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obtain high-frequency detail signals available to reflect the 
evolution of early faults, the db8 wavelet function and 5-layer 
decomposition are selected through comparative tests and 
based on historical experience. The steps of fault evolution 
monitoring based on wavelet analysis are as follows: 

Step 1: Discrete dyadic wavelet transform is carried out on 
the collected original signal. 5-layer wavelet decomposition is 
conducted with db8 wavelet as the base, and the detail signal 
di (i = 1, 2, …, 5) is obtained. 

Step 2: To eliminate the interference of random signals, the 
autocorrelation noise reduction method is used to reduce the 
noise of the band decomposition signal, and suppress the ape-
riodic components in the detail signal. Then, the Hilbert trans-
form is adopted to obtain the time domain waveform Wi (i = 1, 2, 
…, 5) of the envelope of detail signal di, which contains the 
information from high frequency to low frequency of the rolling 
bearing vibration signal, respectively. 

Step 3: For comparison, based on different time point tj (j = 1, 
2, 3, …, N), the time series Wij of band envelope energy is cal-
culated according to step 1 and step 2, of which the RMS value 
is calculated respectively, and the RMS evolution trend of dif-
ferent detail signals of the whole life time is obtained. 

Step 4: For different time point tj (j = 1, 2, 3, …, N), the time 
series of band envelope energy is calculated according to step 
1 and step 2, which is input into the CNN model to obtain the 
CNN feature evolution trend of different detail signals of the 
whole life time. 

 
4.2 Feature extractor based on CNN 
4.2.1 Vibration time series and its pretreatment 

For the rolling bearing evolution data based on vibration time 
series signals, one-dimensional network, such as GRU or 
LSTM is generally used to extract time memory correlation 
characteristics [11]. However, relevant studies [12, 13] sug-
gested that in the field of fault diagnosis, one-dimensional net-

work training is both difficult and imprecise, and the existing 
pre-training network is insufficient, which is not as universal as 
the two-dimensional convolutional network. The low-dimension 
feature extractor suffers certain limitation in fully mining the 
characteristics of original information. The conversion of one-
dimensional time series signals into two-dimensional maps can 
be used to extract high-dimension features of rolling bearing 
signals, and fully leverage the advantages of CNN network [14]. 

To retain the fault evolution trend contained in the original 
data to the greatest extent, and avoid the weakening or loss of 
fault impact components due to the utilization of the normaliza-
tion processing method, the amplitude of the original time se-
quence signal is directly converted into pixel information to 
improve the feature dimension, and retain the time memory 
characteristics in the rolling bearing vibration sequence. The 
specific conversion expression is as follows: 

 
( ) ( ),
[1, ], [1, ]

P i j A i N N j
i M j N

= ∗ − +
∈ ∈

 (1)  

 
where P refers to the transformed two dimension matrix, M 
represents the length of the matrix, N stands for the width of 
the matrix, A is the amplitude of one dimension time domain 
signal, and ( , )P i j denotes the intensity of pixels at point 
( , )i j  in an N M×  image. 

When constructing the matrix graph, the signals are sampled 
at equal pulse intervals, indicating that the attention area of 
each sample is relatively fixed. During the convolution feature 
extraction, the model will pay more attention to and learn the 
peak value and nearby parts that can best reflect the bearing 
vibration characteristics, as shown in Fig. 7. 

 
4.2.2 CNN structure and parameters 

As a multilayer perceptron neural network, CNN can be used 
to obtain abundant data information by using shared weights 

 
 
Fig. 6. Four stages of rolling bearing fault evolution in frequency domain. 
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and increasing the depth of the network [15]. The collocation of 
convolution-pooling-activation layer is a basic nonlinear trans-
formation module, which is the most commonly used, simple 
and efficient CNN network construction method. Experiments 
show that simple CNN model can be used for the feature ex-
traction required in this paper, therefore, the design of complex 
network structures is not necessary. By stacking different num-
bers of nonlinear transformation modules and comparing their 
performance, the deep CNN model is determined to be com-
posed of the following parts: the input layer, 3 convolution-
pooling-ReLU layers, the batch normalization (BN) layer, the 
dropout layer, the full connection (FC) layer and the regression 
layer. Other relevant parameters of CNN are determined 
through the adjustment and comparison of the accuracy and 
speed of the model. The parameters of the CNN model are 
shown in Table 3.  

The specific working principles of each layer of the network 
are as follows: 

1) Convolution layer and pooling layer. The random parame-
ter convolution kernel ω  glides through the whole picture on 
the image, then a series of feature maps i i if X bω= ∗ +  are 
obtained on a convolution layer. After that, the condensed fea-
ture maps are formed by further extracting the dimension re-
duction of features through the maximum pooling layer. 

2) Dropout layer. A dropout layer is connected before the full 
connection layer which discards the neuron node with a given 
probability p (p = 0.2) to reduce the complex coadaptation rela-
tionship between neurons, and improve the robustness of the 
network to the loss of specific neuron connections [8]. 

3) Batch normalization (BN) layer. The batch normalization 
layers are added to both sides of the core feature extractor 
(convolutional-pooling-ReLU layer) to prevent the gradient from 
disappearing or exploding, and speed up the training. 

4) Full connection layer. The full connection layer is set after 
the second BN layer to synthesize the feature extraction results, 
and map them to the sample tag space. The output size is set 
as 1 in this paper, which means that when a sample is input 
into the CNN network, the network will output a value, repre-
senting the evolution index of the rolling bearing at that time. 

5) Regression layer. When the full connection layer changes 
the two-dimensional feature into one dimensional one, the 
feature is output directly through regression function without 
other mapping for reducing the loss of features. At this time, 
the regression layer can be regarded as a special case of fully-
connected layer whose coefficient is 1, and the offset is 0. The 
loss function in this paper is set to root mean square error. 

The acquisition process of rolling bearing fault evolution 
status indicator is shown in Fig. 8. 

 
4.2.3 Extraction results of DLCI 

A new method for extracting the evolution index of rolling 
bearings based on deep CNN is proposed. The normal bearing 
signals are supervised and trained by using the designed CNN 
network. After that, the whole life cycle data are input into the 
network in turn to obtain the corresponding bearing deteriora-
tion characteristics at each time point. Generally, the difference 
of the feature value between the fault sample and the normal 
one increases with the gradual degradation of bearing. In this 
paper, the increasing feature distance between normal and 
degeneration samples is used to develop the rolling bearing 
fault evolution state indicator.  

The extraction process of rolling bearing fault evolution state 

 
Table 3. Parameters of CNN model. 
 

Structure Parameters Output 

Input layer 64×32×1 64×32×1 
Pooling layer 2×2 32×16×1 

Convolutional layer 3×3, 16 32×16×16 

Pooling layer 2×2 16×8×16 
Convolutional layer 3×3, 32 16×8×32 

Pooling layer 2×2 8×4×32 

Convolutional layer 3×3, 32 8×4×32 
Full connection layer 1 1×1×1 

Regression layer 1 1 

 

 
Fig. 7. Attention areas corresponding to vibration signals. 

 

 
 
Fig. 8. Acquisition process of rolling bearing fault evolution status indicator based on CNN network. 
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index includes the following steps: 
1) The vibration signal of the whole lifetime of rolling bearing 

is collected, which includes N time points, and each time point 
contains X vibration points. 

2) The first N’ time points of normal data are selected, and 
divided into training and test set. Considering both the accu-
racy and the convergence speed of the network, the training 
labels are finally set to 0.5 through comparative testing. The 
vibration acceleration signal at each time point is divided into X 
/2048 matrix diagrams for training. 

3) The training set is input into the deep CNN model for train-
ing, and the training rounds are set to 300; the initial learning 
rate is set to 0.01, which is decreased by 10 times every 100 
rounds; and the training batch size is set to 128. The principle 
of parameters selection is to converge the network and mini-
mize the loss value. After parameters selection, the model is 
trained to minimize the loss on the test set. 

4) All samples in the whole life cycle are imported into the 
trained network, and each sample x  outputs a feature value 
y , which corresponds to the deterioration index of rolling bear-

ing. N feature values are obtained at last, which represent the 
degradation states of rolling bearings at N time points. 

Going through the above steps, the whole lifetime evolution 
characteristic trends based on CNN of three kinds of rolling 
bearings are finally obtained. For comparison, the root mean 
square (RMS) index widely applied in the research of rolling 
bearing failure early warning and life prediction is selected at 
the same time, and its change trend in the whole life cycle is 
also calculated. The description of the RMS value is expressed 
as follows: 

 

2

1

RMS /
n

i
t

x n
=

= ∑ . (2)  

 
The evolution trend comparison of the extracted CNN char-

acteristic values and the RMS values during the whole life cy-
cle are shown in Fig. 9. 

It can be seen from Fig. 9(a) that, for three rolling bearings of 
different types and under diversified working conditions, the 
RMS values of them in the normal stage are about 1.5, 0.1 and 
0.5, respectively, which means it is impossible to determine the 
unified alarm threshold between different data according to 
RMS value. However, for the CNN values shown in Fig. 8(b), 
although the values increase to varying degrees in later failure 
stages based on different working conditions of bearings, the 
value in the normal stage is always normalized by CNN model 
to around 0.5, and there is a clear degradation trend when the 
value reaches about 1. This rule works simultaneously be-
tween the three groups of life cycle data of different types of 
bearings, under diversified working conditions and with various 
test rigs, which proves that the method can be used to realize 
fault alarm with consistent threshold only based on normal data, 
and provides a new idea for one-class classification and gen-
eral diagnosis under variable working conditions. 

4.3 DLCI construction based on wavelet-CNN 
Going through the above steps, the RMS values and CNN 

feature values of three groups of rolling bearing data in whole 
frequency band and each detail frequency band are obtained, 
as shown from Figs. 10-15. 

As can be seen from the figures: 
1) The RMS values of different bearings in whole frequency 

band or in certain frequency range are distributed in different 
numerical dimensions in normal stage. For example, in Figs. 
10(a), 12(a) and 14(a), the RMS values in whole frequency 
band are distributed somewhere around 0.08, 1.4 and 0.7, 
respectively in the normal stage. In the meantime, the RMS 
values of each detail signal, as shown in Figs. 10(b), 12(b) and 

(a) RMS 
 

 
(b) CNN feature 

 
Fig. 9. Comparison of feature value evolution based on three groups of 
whole lifetime data. 
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14(b) are also distributed discretely without a unified threshold. 
2) Differently from the description of paragraph 1, as can be 

seen from Figs. 11, 13 and 15, the values of CNN features in 
the normal stage are normalized to about 0.5 in both whole 
frequency band and the high to low frequency bands, and the 
evolution trends of wavelet detail signals of different bearings 

are mapped to the same dimension, which is of great signifi-
cance for the development of general models and variable 
condition diagnosis. 

3) From the comparison of (a) and (b) from Figs. 10-15, it 
can be seen that in the early stage of the faults, the RMS val-
ues and the CNN feature values in whole frequency band show 

      
 (a) RMS in whole frequency band (b) RMS in different frequency ranges 
 
Fig. 10. RMS evolution trend of ZA 2115 bearing during its whole lifetime. 

 

       
 (a) CNN feature in whole frequency band (b) CNN feature in different frequency ranges 
 
Fig. 11. CNN feature evolution trend of ZA 2115 bearing during its whole lifetime. 

 

      
 (a) RMS in whole frequency band (b) RMS in different frequency ranges 
 
Fig. 12. RMS evolution trend of HRB 6206 bearing during its whole lifetime. 
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very weak upward trends only, which are difficult to monitor by 
the sensors. However, the upward trends are quite obvious for 
the detail signals in the high-frequency bands (d1 and d2), 
which facilitates the division of evolution stages. Therefore, in 

this paper, d1 and d2 high-frequency detail signals of bearings 
are selected as the feature indicators extracted by CNN, and 
the alarm and failure threshold are determined, thereby predict-
ing the remaining useful life based on this. 

      
 (a) CNN feature in whole frequency band  (b) CNN feature in different frequency ranges 
 
Fig. 13. CNN feature evolution trend of HRB 6206 bearing during its whole lifetime. 

 

      
 (a) RMS in whole frequency band  (b) RMS in different frequency ranges 
 
Fig. 14. RMS evolution trend of BMD 6009 bearing during its whole lifetime. 

 

      
 (a) CNN feature in whole frequency band  (b) CNN feature in different frequency ranges 
 
Fig. 15. CNN feature evolution trend of BMD 6009 bearing during its whole lifetime. 

 



 Journal of Mechanical Science and Technology 37 (6) 2023  DOI 10.1007/s12206-023-0504-8 
 
 

 
10  

5. Remaining useful life prediction of roll-
ing bearings based on DLCI and PF 

5.1 Determination of degradation and failure 
thresholds 

Taking the advantages of the threshold normalization ability 
of CNN, the unified degradation thresholds and failure thresh-
olds are conducive to the establishment of the model under 
different working conditions of rolling bearings. Before stage 
division and threshold determination, it is necessary to filter 
and denoise the characteristic curve to improve the accuracy of 
RUL prediction. The moving average filter is optimal to reduce 
random noise while retaining a sharp step, of which the formula 
is expressed as follows: 

 

[ ] [ ]
1

0

1 M

j

y i x i j
M

−

=

= +∑   (3) 

 
where x[ ] and y[ ] refer to the input and output signals, respec-
tively, and M stands for the sliding window length which is set 
to 5 in this paper. 

After smoothing the characteristic curves of the detail signals 
of d1 and d2, the evolution trends are divided into several 
stages to determine the unified degradation and failure thresh-
old. Due to the large gap between normal and abnormal sam-
ples of rolling bearings, and the relatively low dimension of 
evolution index, the k-means unsupervised clustering algorithm 
is selected to automatically divide the evolution index during 
the whole life time into three parts, representing the three 
stages of the evolution of rolling bearings. The k-means clus-
tering method is used to compute the shortest Euclidean dis-
tance between each sample point and the cluster center by 
iteration, which is used as the standard to cluster samples into 
their categories [16]. The calculation of k-means is expressed 
as follows: 

 
2

1 2

min
i

k

i
i x C

x μ
= ∈

−∑∑   (4) 

 
where iμ  refers to the centroid of cluster partition iC , and x  
represents the characteristic curve. 

The rolling bearing evolution stage is adaptively divided into 
normal, degradation and failure stage by clustering. The values 
corresponding to the starting point of degradation and failure 
stage are respectively marked as the degradation and the fail-
ure threshold. Finally, the characteristic curve after smooth 
filtering and unsupervised evolution stage division is obtained, 
as shown in Fig. 16. 

The results in Sec. 4.3 prove that the detail signals in the 
band with relatively high frequency can better reflect the early 
fault evolution. Therefore, the evolution stages are divided, and 
the RUL is predicted based on wavelet detail signals of d1 and 
d2. The following comparison includes the evolution stages 
divided by k-means clustering based on d1 or d2 detail signal 
and their mean values, and the determined degradation and 
failure thresholds and their corresponding moments, as shown 
in Table 4. 

It can be concluded from Table 4: 
1) The early degradation features are mainly concentrated in 

d1 and d2 wavelet detail signals, and single-detail signal is 
prone to produce large errors when determining the threshold. 
Therefore, in this paper, the mean value of d1 and d2 is taken 
as the evolution measurement index to predict the residual life 
of rolling bearing. 

2) The degradation and failure thresholds of the features ex-
tracted by CNN are highly unified for the three bearings with 
large differences, and their early fault evolution ranges are 
mainly from DLCI value of 0.6 to 1.0. It is proved that the wave-
let-CNN model developed in this paper can be used to well 
normalize the threshold. Then, the PF method is adopted to 
track and predict the RUL of the three groups of bearings. 

 
5.2 Remaining useful life prediction based on 

particle filter 
Based on the empirical degradation model, the statistical fil-

tering method using particle filter (PF) algorithm to predict the 
RUL of machine element is widely used in practice because it 
can adapt to non-linear and non-Gaussian state prediction, and 
provide the uncertainty expression of prediction results [17, 18]. 
With the particle filter method, a set of discrete random particle 
sets can be utilized to approximate the probability density func-

 
Table 4. Thresholds of different detail signals of three bearings based on k-means clustering. 
 

HRB 6206  
(whole life cycle with 300 time points)

ZA 2115 
 (whole life cycle with 984 time points)

BMD 6009  
(whole life cycle with 6380 time points)

 
Beginning of  
degradation 

Beginning of  
failure 

Beginning of  
degradation 

Beginning of 
failure 

Beginning of  
degradation 

Beginning of  
failure 

Threshold 0.6146 0.9837 0.6094 1.0335 0.6297 0.9714 
d1 

Time point 213 251 552 700 3219 4439 

Threshold 0.5482 0.9621 0.6141 1.2108 0.5623 0.8827 
d2 

Time point 208 230 573 701 3248 4938 
Threshold 0.6177 0.9316 0.6219 1.1470 0.5992 0.9408 ( )d +d1 2

2
 

Time point 212 237 572 701 3241 4630 
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tion of the system, and the integral operation can be replaced 
with the sample mean to obtain the minimum variance estimate 
of the state, thereby achieving the prediction with inconsistent 
data distribution. In addition, particle filter is not affected by 
system noise and measurement noise, which has good predic-
tion function and high accuracy for non-Gaussian non-linear 
systems, such as rolling bearing evolution trend. Each RUL 
prediction based on particle filter algorithm calculated in this 
paper is within 1 minute, while the prediction results based on 
PF are in hours, in that case, the real-time prediction is enough 
to meet the monitoring needs of aeroengines. 

Assuming that the feature curve of bearing follows the for-
mula bK dKy a e c e= × + ×  where a, b, c and d contain Gaus-
sian white noise, and K refers to the time step, then the state 
vector is expressed as follows: 

 
[ ]( ) ( ), ( ), ( ), ( )x K a K b K c K d K= . (5) 

 
The equation of state and observation are as follows: 
 

( 1) ( ) ( ), ~ (0, )
( 1) ( ) ( ), ~ (0, )
( 1) ( ) ( ), ~ (0, )
( 1) ( ) ( ), ~ (0, )

a a a

b b b

c c c

d d d

a K a K w K w N
b K b K w K w N
c K c K w K w N
d K d K w K w N

σ
σ
σ
σ

+ = +⎧
⎪ + = +⎪
⎨ + = +⎪
⎪ + = +⎩

 (6) 

( ) ( )( ) ( ) ( )
( ), ( ) ~ (0, ).

× ×= × + ×
+

b K K d K K

v

y K a K e c K e
v K v K N σ

  (7) 

 
The RUL prediction of rolling bearing based on PF algorithm 

includes 6 steps: 
1) After collecting the vibration signal of bearing, the degra-

dation index representing the condition of rolling bearing is 
extracted by using CNN model. 

2) The degradation threshold and the failure threshold are de-
termined. The time corresponding to the degradation threshold 
is taken as the beginning moment of the RUL prediction, and 
the moment corresponding to the failure threshold is taken as 
the termination of prediction. 

3) Considering that the constructed equation should conform 
to the degradation trend of rolling bearings with high fitting 
accuracy and without over-fitting, a four-parameter double 
exponential model is established, and the n  feature points 
before the degradation threshold are fitted to get the initial pa-
rameters of a0, b0, c0 and d0 with the least squares curve. 

4) The feature value VK+1 at time K + 1 is predicted in ad-
vance by using PF method. In the case that VK+1 has not 
reached the failure threshold, continue to calculate the feature 
value VK+2 until it exceeds the failure threshold, then, finish the 
prediction and record the present time Kr at which RUL = Kr – K. 

5) Continue to collect the bearing data, extract the feature 
index at time K + 1 by using CNN, and take the n features 
before the time; repeat step 3 and step 4 to get the remaining 
useful life at time K + 1. 

6) When the degradation index reaches the failure threshold, 
finish the prediction, and the RUL curve in degradation stage is 
obtained. Compared it with the actual RUL curve to get the 
relative error of prediction. 

The prediction error can be described as root mean square 
error, expressed as follows: 

 
2

1

1RMSE (RUL ( ) RUL ( ))
m

p r
i

i i
N =

= −∑   (8) 

 
where RULp refers to the predicted RUL value of rolling bear-
ing, RULr represents the real RUL value, and m stands for the 
number of predicted time points. 

 
5.3 Comparison of features of wavelet detail 

and whole frequency band of CNN 
5.3.1 Comparison between CNN detail features and 

CNN whole frequency band features 
According to the above process, the progressive RUL track-

ing prediction is carried out for the bearing degradation stage 
based on wavelet-CNN detail feature, and the RUL prediction 
results of the three groups of data are obtained, as shown in 
Fig. 17(a). To compare the difference of RUL prediction results 
based on the evolution indexes of high-frequency detail feature 
and whole frequency feature, in this paper, the RUL is tracked 
and predicted according to the evolution trend of CNN whole 
frequency band features, as shown in Figs. 11(a), 13(a) and 
15(a). And the degradation and failure threshold is determined 
by smoothing and clustering. Besides, the RUL prediction re-
sults of three groups of data are finally obtained, as shown in 
Fig. 17(b). 

From the comparison between Figs. 17(a) and (b), it can be 
seen that due to the indistinctive change in early fault stage, 
the degradation and failure thresholds of CNN whole frequency 
band features determined based on unsupervised clustering 
lags behind the wavelet-CNN detailed features, resulting in the 
overall delay in the prediction of degradation stage. To quantify 
the difference between the prediction accuracy of details and 
whole frequency features, the error values of the two features 

 
 
Fig. 16. The smoothed detail signal divided into 3 evolution stages after 
clustering. 
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in the particle filter curve fitting stage, the error values of RUL 
predicted results, and the error values of RUL predicted results 
normalized according to the whole life points are calculated, 
respectively, as shown in Table 5. 

As can be seen from Table 5: 
1) The CNN features based on d1 and d2 wavelet detail sig-

nals can be used to predict the degradation and failure earlier 
than the whole frequency band CNN features, which proves 
that the high-frequency detail signals are more sensitive to 
early degradation, and more conducive to early fault warning. 

2) The prediction accuracy of wavelet-CNN for HRB 6206 
and ZA 2115 bearings are significantly higher than that of 
whole frequency CNN. For BMD 6009, the prediction accuracy 
of whole frequency CNN is basically equivalent to that of wave-
let-CNN.  

3) Compared with the other two groups of data, the normal-
ized error of BMD 6009 bearing prediction results is signifi-
cantly higher, which is due to longer test time and more predic-
tion steps, resulting in more iterations of PF prediction, and 
relatively larger error accumulation. 

 
5.3.2 Comparison of CNN wavelet detail features 

and RMS wavelet detail features 
It is proved with the above comparison that compared with 

the whole frequency feature, the high-frequency detail feature 
can be used to perceive the emergence and development of 
early damage in a more timely manner. The prediction accu-
racy of CNN features and traditional RMS features based on 
wavelet are compared and analyzed below. According to the 
evolution trend of high-frequency detail features of RMS, as 
shown in Figs. 10(b), 12(b) and 14(b), the particle filter RUL 
tracking prediction is carried out, and the degradation and fail-
ure thresholds are also determined by smoothing and cluster-
ing. Finally, the RUL prediction results of three groups of data 
are obtained, and compared with the CNN detail features ob-
tained previously, as shown in Fig. 18. The specific comparison 
between the prediction results of CNN details and RMS details 
is shown in Table 6. 

From Fig. 18 and Table 6, it can be concluded that: 
1) Compared with the wavelet-RMS detail features, the 

wavelet-CNN detail features can better realize the threshold 
normalization under different working conditions. 

2) Seen from the comparison results of the prediction accu-
racy of three rolling bearing data, the RUL prediction errors 
based on wavelet-CNN detail features are significantly lower, 
of which the prediction accuracies are noticeably higher than 
the wavelet-RMS features. 

3) The prediction errors of wavelet-RMS values of BMD 
6009 data are relatively close to that of wavelet-CNN feature 
values. However, from the prediction results of BMD 6009, as 
shown in Fig. 18(b), it can be seen that the wavelet-RMS val-
ues are not accurate in predicting early faults, whose overall 
accuracy is lower than that of wavelet-CNN feature values, as 
shown in Fig. 18(a). 

 
(a) Wavelet-CNN detail features 

 

 
(b) CNN whole frequency band features 

 
Fig. 17. RUL prediction results of three groups of data degradation stages 
based on CNN features. 

 

Table 5. RUL accuracies predicted by PF method based on CNN and wavelet-CNN. 
 

 HRB 6206 (300 time points) ZA 2115 (984 time points) BMD 6009 (6380 time points) 

Feature extraction method CNN Wavelet-CNN CNN Wavelet-CNN CNN Wavelet-CNN 
Degradation start point 227 212 602 572 3594 3241 

Failure start point 267 231 655 650 4782 4470 
RMSE of fitting curve 0.1053 0.0683 0.0177 0.0163 0.1081 0.0925 

RMSE of prediction results 7.45 3.31 20.49 6.92 290.48 327.59 
Normalized RMSE of prediction results 2.48 % 1.10 % 2.08 % 0.73 % 4.55 % 5.13 % 
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5.4 Comparison with other RUL prediction mod-
els 

For the combined model of CNN and PF, CNN plays the role 
of degradation feature extraction and dimension reduction, 
while PF model is responsible for RUL prediction based on 
degradation features. However, other deep-learning models, 
such as LSTM or GRU network, can be used to extract the 

time memory correlation characteristics from the rolling bearing 
evolution data based on one-dimensional vibration time series 
signal, and independently complete the RUL prediction task. 
To compare with the model developed in this paper, taking the 
evolution trend of high-frequency wavelet details of HRB 6206 
bearing as an example, the one-dimensional time series sig-
nals are trained in the normal stage (0-20 h) through LSTM and 
GRU networks, respectively, and the evolution trend in the 
degradation and failure stages (20-30 h) is predicted. Consid-
ering that the prediction results of the whole life stage may not 
reach high accuracy by normal data training only, a small 
amount of data of the early degradation stage (0-21 h) is intro-
duced besides normal data, and the training is conducted 
based on two models to predict the remaining stages (21-30 h). 
The prediction results of the evolution trends are shown in Fig. 
19. 

It can be seen from Fig. 19 that due to the huge difference in 
data distribution between normal stage and degeneration stage, 
the LSTM or GRU regression model fails to predict the evolu-
tion trend of abnormal data after the training based on normal 
data only. After introducing a small amount of early degrada-
tion fault data in the training stage, the two models exhibit cer-
tain prediction ability for the degradation trend, but the LSTM 
model only reached the expected failure threshold in about the 
27th hour, which is later than the 21 hour 12 minute of the 
CNN-PF model. In addition, the trend predicted by using GRU 
model can never reach the expected failure threshold. The 

Table 6. Accuracies of RUL predicted by PF method based on wavelet-RMS and wavelet-CNN. 
 

 HRB 6206 (300 time points) ZA 2115 (984 time points) BMD 6009 (6380 time points) 

Feature extraction method Wavelet-RMS Wavelet-CNN Wavelet-RMS Wavelet-CNN Wavelet-RMS Wavelet-CNN 

The value corresponding to the  
degradation start point 0.0410 0.6177 0.0393 0.6219 0.0603 0.5992 

The value corresponding to the failure 
start point 0.0804 0.9316 0.0911 1.1470 0.1301 0.9408 

RMSE of fitting curve 0.0101 0.0683 0.0272 0.0163 0.0312 0.0925 
RMSE of prediction results 3.52 3.31 10.87 6.92 374.94 327.59 

Normalized RMSE of prediction results 1.17 % 1.10 % 1.10 % 0.73 % 5.88 % 5.13 % 

 

 
(a) Wavelet-CNN detail features 

 

 
(b) Wavelet-RMS detail features 

 
Fig. 18. RUL prediction results of three groups of data degradation stages 
based on detail features. 

 

 
 
Fig. 19. Prediction results of evolution trend of rolling bearing based on 
GRU and LSTM. 
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comparison of RUL prediction results based on LSTM model 
after introducing degradation data and CNN-PF model is 
shown in Fig. 20.  

It can be seen that despite the introduction of a small amount 
of fault data, the prediction ability of LSTM is still lower than 
that of CNN-PF. Therefore, it can be concluded that the CNN-
PF model has unique advantages in the construction of evolu-
tion trend and prediction of RUL based on normal samples only. 

 
6. Conclusions  

In this paper, a general early warning model of rolling bearing 
under variable working conditions was proposed based on 
wavelet envelope spectrum analysis and deep convolution 
neural network. The model can be trained based on normal 
data of rolling bearing only, and the feature indicator was con-
structed according to the feature distance of normal and de-
graded samples, which has similar warning threshold for rolling 
bearings under different working conditions. Through the RUL 
prediction results of multiple groups of whole lifetime data 
based on particle filter, this method has been proved to have 
the following advantages: 

1) The deep convolution neural network can be trained based 
on normal data only, whose threshold can be normalized under 
different working conditions of rolling bearings based on labels. 
For the evolution features of the three different bearings under 
various working conditions in this paper, the degradation and 
failure thresholds based on CNN values are all distributed 
somewhere around 0.6 and 1.0, which is of great significance 
for rolling bearing evolution monitoring and RUL prediction in 
the absence of fault samples with new test rigs. 

2) Compared with the traditional RMS value, CNN features 
can realize the threshold normalization under different working 
conditions with lower RUL prediction error. 

3) The high-frequency detail features obtained based on 
wavelet envelope spectrum analysis can be used to detect the 
occurrence of faults earlier than the original whole frequency 
features. It is experimentally proved that the wavelet-CNN 
model developed in this paper is more conducive to the early 

fault warning of rolling bearings. 
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