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Abstract  Affected by the transmission path, it is very difficult to diagnose the vibration
signal of the rolling bearing on the aircraft engine casing. A fault diagnosis method based on
convolutional neural network is proposed for the weak vibration signal of the casing under the 
excitation of rolling bearing fault. Firstly, the processing method of vibration signal is studied. 
Through comparison and analysis, it is found that the fault characteristics of rolling bearing are
more easily expressed by continuous wavelet scale spectrum, and a better recognition rate is
obtained. Finally, the experiment was carried out with an aero-engine rotor tester with a casing, 
and the method based on wavelet scale spectrum and convolutional neural network was used 
for diagnosis. The results were compared with the support vector machine method. The results 
show that the method has a high recognition rate for the weak fault signals of different fault
types collected on the aero engine case, and its fault recognition rate reaches 95.82 %, which 
verifies the superiority and potential of the method for rolling bearing fault diagnosis.  

 
1. Introduction   

As a key component in aero-engines, rolling bearing is of a high failure rate due to their high 
temperature, high speed and large load change range. Once a fault occurs, it will cause abra-
sion of the rotor, transmission failure, and even cause the engine to stop in the serious case. 
Therefore, the condition monitoring and fault diagnosis of aircraft engine rolling bearing is of 
great significance [1, 2]. 

Machine learning is an effective method for fault diagnosis of rolling bearings. Chen et al. [3] 
extracted the characteristics of time domain and frequency domain, reduced the feature by 
principal component analysis (PCA), and then used Gaussian mixture model to diagnose bear-
ing faults. Zhang et al. [4] proposed to use self-organizing neural network for rolling bearing 
state. Chen [5] used BP neural network for early fault intelligent diagnosis of rolling bearings. 
Saidi et al. [6] inputed the artificially acquired high-order spectral fault features into the SVM for 
bearing fault identification. 

In recent years, deep learning has achieved great success in the fields of natural language 
processing, computer vision, and image recognition [7, 8]. Because of its powerful feature 
learning and representation ability, and the ability to adaptively learn features, it is widely used 
in the field of fault diagnosis. For example, Chen et al. [9] used the deep neural network to 
evaluate the damage degree of rolling bearings. Lei et al. [10] used deep learning to achieve 
health monitoring of mechanical equipment. Shao et al. [11] proposed a rolling bearing fault 
feature learning method based on compressed sensing and an improved convolutional deep 
confidence network, compared with other standard deep learning methods and manually ex-
tracted features, it achieved a higher recognition rate. Zeng et al. [12] obtained a time-
frequency diagram of the signal into S transform, and then used the convolutional neural net-
work to identify the fault of the gearbox. Li et al. [13] processed the signal by short-time Fourier
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transform to obtain the time-frequency diagram, and then used 
the convolutional neural network to diagnose the bearing fault. 
Janssens et al. [14] studied the application of convolutional 
neural networks in rolling bearing fault diagnosis, the frequency 
spectrum of the vibration signal is used as the input of the CNN, 
the CNN is used to directly learn fault features and use them 
for intelligent diagnosis, compared with the diagnosis of the 
features, higher fault diagnosis accuracy is achieved, indicating 
that CNN can be effectively used for fault feature learning. Wu 
et al. [15] used a one-dimensional convolutional neural network 
to realize the fault diagnosis of the gearbox. Zhang et al. [16] 
directly used the original vibration signal of the rolling bearing 
as the input of the CNN to realize the fault diagnosis of the 
rolling bearing. Jia et al. [17] used the weighted Softmax loss 
function to study the imbalance between normal and fault 
samples, and proposed a neuron activation maximization algo-
rithm to understand the CNN fault feature learning process.  

For the fault diagnosis of the rolling bearing vibration signal 
collected on the aircraft engine casing, due to the complicated 
transmission path, the structural aerodynamic noise, combus-
tion noise and vibration noise are usually coupled together, 
thus that the fault characteristics of the casing signal are very 
weak. In the case of bearing fault diagnosis, it is difficult to 
obtain the desired effect. 

Due to the huge advantage of convolutional neural network 
in image recognition, this paper proposes a fault diagnosis 
method based on convolutional neural network [18, 19]. Using 
the characteristic learning advantage of convolutional neural 
network, the fault diagnosis of rolling bearing based on casing 
signal is realized by using the characteristic learning advantage 
of convolutional neural network. At the end of the paper, the 
method is verified, analyzed and compared by experiments. 

 
2. Convolutional neural network 

Convolution neural network (CNN) [20] is a feedforward neu-
ral network, which is mainly composed of a convolutional layer, 
a pooling layer, and a fully connected layer. These layers are 
used to complete the task of feature learning and classification. 

 
2.1 Convolutional layer 

The convolution layer uses multiple convolution kernels and 
the input image to perform convolution. After adding the bias 
term, the activation function can obtain a series of feature 
maps. The mathematical expression of the convolution is 
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2.2 Pooling layer 

The pooling layer is usually behind the convolution layer. Its 
main function is to reduce the dimension of the feature map 
and ensure the translation invariance of its features. Pooling 
methods used commonly include: Max pooling, mean pooling, 
stochastic pooling, etc. 

Generally, only the dimensionality reduction is performed on 
the pooling layer, and there is no need to update the weights. It 
performs a pooling operation on the feature map output by the 
convolution layer at each non-overlapping size region. Both 
dimensions have been reduced. 

 
2.3 Full connection layer 

After the input image has been propagated through the con-
volutional layer and the pooling layer for several times, it is 
classified using the fully connected layer. The input of the fully 
connected layer is the one-dimensional feature vector ex-
panded by all feature maps, which can be obtained after 
weighted summing and activation function: 
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ally use the Softmax activation function. 

 
3. Simulation experiment of rolling bearing 

failure of aero engine rotor experimen- 
ter with casing 

3.1 Aero-engine rotor experimental 

The experimental platform is the aero-engine rotor tester with 
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casing, which is designed and manufactured in a 1:3 size 
based on a real aero-engine, as shown in Fig. 1. Firstly, the 
casing of the tester is consistent with the shape of the core 
engine of the aero engine. Secondly, its internal structure is 
simplified. Finally, the structure of the multi-stage compressor 
is simplified into a single-stage roulette. The structure of the 
tester can be expressed as "rotor-abut-van-casing system", 
which has the structure of a real aeroengine and can effectively 
simulate the attenuation process of rolling bearing vibration 
signal through the transmission path. Chen et al. [21] have 
made relevant verifications and discussions on the above. 

 
3.2 Rolling bearing fault simulation experi-

ment 

In this experiment, a 6206 single-row deep groove ball bear-

ing was used, and a 6 mm wide crack was processed on the 
inner and outer ring surfaces by electric discharge wire cutting. 
and a cylindrical pit with a radius of 0.5 mm and a depth of 
2 mm was machined on the surface of the rolling element, as 
shown in Fig. 2. The bearing parameters are shown in Table 1. 

The rolling bearing failure simulation experiment is to install 
normal (N), inner ring fault (IF), outer ring fault (OF), and ball 
fault bearings (BF) into a rotor experimenter with a casing. In 
the experiment, two vibration acceleration sensors are ar-
ranged vertically above the casing and horizontally in the cas-
ing. As shown in Fig. 1, a vibration acceleration sensor (B&K 
4805) and a data collector (NI USB9234) are used to collect 
vibration acceleration signals with a sampling frequency of 
10240 Hz. Each data sample contains 8192 points. This ex-
periment was performed at three different speeds, and the 
experimental scheme is shown in Table 2. 

 
3.3 Weakness of rolling bearing fault charac-

teristics in casing signals 

The artificial fault bearing tests were performed at three dif-

 
(a) External 

 

 
(b) Innel 

 

 
(c) Section drawing 

 
Fig. 1. Aero-engine rotor experimental.  

 

Table 1. Ball bearing dimensions. 
 

Model Thickness Rolling body 
diameter/mm 

Section  
diameter/mm 

Number of 
balls 

6206 16 9.5 46 9 

 
 

Table 2. Rolling bearing fault simulation experiment scheme. 
 

Serial  
number 

Rotating speed 
(r/min) 

Bearing 
status Measuring point position 

1 1500 

N  
IF 
OF 
BF 

Vertical measuring point; 
horizontal measuring point; 

housing position 

2 1800 

N  
IF 
OF 
BF 

Vertical measuring point;  
horizontal measuring point; 

housing position 

3 2000 

N  
IF 
OF 
BF 

Vertical measuring point;  
horizontal measuring point; 

housing position 

 
 

 
(a) Outer ring fault (b) Inner ring fault (c) Rolling element 

failure 
 
Fig. 2. Bearing 6206 after fault processing. 
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ferent speeds, and three types of fault time domain waveforms 
of bearing fault vibration signals at 1800 rpm were taken as 
examples, as shown in Fig. 3. Figs. 3(a)-(c) are the time do-
main waveforms of the outer ring fault, inner ring fault and ball 
fault collected on the bearing house, respectively; Figs. 3(d)-(f) 
are collected on the horizontal measurement points of the cas-
ing time domain waveform diagram of outer ring fault, inner ring 
fault and ball fault. It can be known from Fig. 3 that the fault 
impact of the bearing point measurement signal is obvious, and 
the impact amplitude is large. However, the shock characteris-
tics in the box's measuring point signal are masked by a lot of 
noise, and the amplitude of the signal transmitted to the box 
becomes very weak. 

The envelope spectrum is shown in Fig. 4 obtained by using 

a Hilbert transform to analyze the envelope spectrum of the 
signal in Fig. 3. It can be seen from Fig. 4(a) that the passing 
frequency of the rolling element on the outer ring raceway is 
110 Hz, and its harmonics are particularly obvious, but in its 
corresponding casing signal, as shown in Fig. 4(b), only some 
weak harmonics appear weight. Similarly, in Fig. 4(c), the pass-
ing frequency of the rolling element on the inner ring raceway 
shows 165 Hz, but the passing frequency of the rolling element 
on the inner ring raceway is not found in its casing signal, and 
only some noise frequency. The same is true in the rolling body 
failure analysis. It can be known that due to the influence of the 
transmission path, the fault characteristics in the receiver signal 
are seriously attenuated, so it is very difficult to extract the roll-
ing bearing fault characteristics from the receiver signal. 

 
 
Fig. 3. Time-domain waveforms of different faults: (a) Outer race fault from bearing housing; (b) inner race fault from bearing housing; (c) rolling element fault 
from bearing housing; (d) outer race fault from casing; (e) inner race fault from casing; (f) rolling element fault from casing. 

 
 

 
 
Fig. 4. Envelope spectrum of vibration signals: (a) Outer race fault from bearing housing; (b) inner race fault from bearing housing; (c) rolling element fault 
from bearing housing; (d) outer race fault from casing; (e) inner race fault from casing; (f) rolling element fault from casing. 
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4. Rolling bearing fault diagnosis method 
based on casing signal 

4.1 Intelligent fault diagnosis process 

This paper proposes a convolutional neural network method 
that can adaptively extract fault features and implement intelli-
gent diagnosis. The specific flowchart is shown in Fig. 5, which 
is summarized as follows: 

Step 1: Vibration signals of rolling bearings are collected by 
sensor measurement and data acquisition system; 

Step 2: Processing the vibration signal to obtain a two-
dimensional image signal; 

Step 3: Divide the data set into a training sample and a test 
sample; 

Step 4: Establish a CNN network model; 
Step 5: The gradient descent method is used to update the 

parameters in reverse, and then used to train the unsupervised 
feature learning of the sample. Extracting the depth features for 
rolling bearing fault diagnosis; 

Step 6: Verify the test sample using the proposed method 
and output the diagnosis result. 

The algorithm used in this paper is shown in Fig. 6. 

 
4.2 Convolutional neural network structure 

The network model structure of CNN mentioned in this paper 
is shown in Fig. 7. The CNN is composed of a convoluted layer, 
a pooled layer, and a fully connected layer. C, P, and F to rep-

resent sepeartely the convolutional layer, the pooled layer, and 
the fully connected layer. The size of the convolution kernel is 
N*D*H, where N represents the number of convolution kernels, 
D represents the depth of the convolution kernel, and H repre-
sents the height of the convolution kernel. When inputting the 
wavelet scale spectrum, CNN first uses the convolution layer 
C1 to adaptively learn the features, then reduces the dimen-
sions of the convolution layer through the pooling layer, repeats 
the above process, and finally features in the fully connected 

 
 
Fig. 5. CNN fault diagnosis method flow chart.  

 

 
 
Fig. 6. Pseudocode for CNN. 
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layer F9 are flatten to a one-dimensional vector and input into 
the softmax classifier to identify the fault category of the bear-
ing. The detailed parameters of the CNN model are shown in 
Fig. 5. 

 
4.3 Data processing methods 

In this paper, three different data processing methods are 
used to process the collected vibration signals. The specific 
methods are: Matrix diagram method (MDM), kurtosis diagram 
method (KDM) [22], wavelet scale spectrum (WSS) [23]. 

 
4.3.1 Matrix diagram method 

First, the measurement data with standard time scale and 
amplitude scale is obtained; then the data set of each state is 
divided into a series of time subsequences, and these time 
subsequences are sorted by successive interleaving sampling 
to generate data matrices; finally, the matrix graph is estab-
lished by using the method shown in Fig. 8, and the matrix 
graph sample is shown in Fig. 9(a).  

4.3.2 Fast spectral kurtosis method  
The fast spectrum is decomposed by the band alternating 

three-decomposition method, and the spectrum kurtosis is 
expressed in the plane region to obtain the spectral kurtosis 
value under the combination of the optimal frequency and fre-
quency resolution, the signal instability can be detected and 
characterized, as shown in Fig. 9(b). 

 
4.3.3 Wavelet scale spectrum 

A wavelet scale spectrum is a two-dimensional depiction of a 
time and frequency of a signal. The principle is to give a corre-
sponding frequency description on each time scale on the time 
axis, which constructs a two-dimensional time-frequency distri-
bution diagram with the vertical axis as the frequency and the 
horizontal axis as the time, as shown in Fig. 9(c). 

 
4.4 Analysis of the influence of convolution 

kernel size on test results 

In the training process, the size of the convolution kernel is 
very important for achieving high performance; therefore, the 
data sets obtained by the three data processing methods are 
respectively used for experiments to observe the variation 
trend of the classification error based on the convolution ker-
nels of different sizes, as shown in the Fig. 10. It can be seen 
from Fig. 10 that the three methods have the lowest training 
error rate when the convolution kernel size is 5*5, and the sub-

 
 
Fig. 7. Convolutional neural network model. 

 

 
 
Fig. 8. Method of building a matrix diagram. 

 

 (a) Matrix diagram           (b) Kurtosis map           (c) Wavelet scale   
  spectrum 
 
Fig. 9. Data sample. 

 

 
 
Fig. 10. Error rate trends for different convolution kernel sizes. 
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sequent error rate gradually increases; when the convolution 
kernel continues to grow, it means that the super-large convo-
lution kernel may bring unnecessary negative effects in the 
training process. 

 
4.5 Analysis of test results 

4.5.1 Fault classification results at different speeds 
The data samples used in this paper are shown in the table. 

Each data sample has 8000 pictures, and each fault type has 
2000 pictures. 

First, the different fault signals at different speeds are re-
garded as one kind of fault data. Here, the signals collected at 
the vertical measurement points of the case are used as data 
samples. Three preprocessing methods are used to process 
the vibration signals. The obtained data set is based on the 
ratio of 2:8, which is randomly divided into a training set and a 
test set, and the sample set is used as the input of the CNN. 
The results of fault classification at different speeds are shown 
in the Fig. 11. As can be seen from the Table 3, the fault classi-
fication results of the proposed method at different speeds 
have reached more than 98 %. 

 
4.5.2 Classification results of bearing house sig-

nals 
In order to further verify the effectiveness of this method, the 

signal samples collected by the same kind of fault bearing at 
different speeds are taken as a kind of fault data, and then the 
vibration signal is processed by three different data preproc-
essing methods. The obtained picture data set is in the ratio of 
2:8. It is randomly divided into training set and test set, and the 

sample set is used as the input of CNN. The CNN network 
model used in this paper is shown in Fig. 6 and finally the fault 
classification results of different data processing methods 
combined with CNN are shown in Fig. 12 and Table 4. 

In addition, a total of 13 time-domain and frequency domain 

Table 3. Data sample introduction. 
 

Number of samples 
Sample type 

N OF IF BF 

MDM 2000 2000 2000 2000 

KDM 2000 2000 2000 2000 
WSS 2000 2000 2000 2000 

 

 
 
Fig. 11. Fault classification results at different speeds. 

 

Table 4. Bearing house signal classification result. 
 

Accuracy/%  
Measuring point 

CNN+MDM CNN+KDM  CNN+WSS SVM

Bearing housing 99.43 99.75 100 99.26

 

 
 
Fig. 12. Fault classification result of bearing house signal. 

 

 
(a) Feature distribution map extracted from the first convolution layer 

 

 
(b) Feature classification result graph 

 
Fig. 13. Classification of bearing house signal characteristics. 

 



 Journal of Mechanical Science and Technology 34 (6) 2020  DOI 10.1007/s12206-020-0506-8 
 
 

 
8 

features are extracted for the vibration signal, including: 
(1) Time-domain dimensionless features: Absolute average 

amplitude, square root amplitude, effective value, peak value, 
form factor, peak index, impact index, twist, kurtosis, margin 
index; 

(2) Frequency domain dimensionless features: Center of 
gravity frequency, mean square frequency, frequency variance. 

The extracted 13 time-frequency features are input into the 
parameter-optimized support vector machine (SVM) model, 
and the fault classification results are obtained. As shown in 
Table 4, the fault classification accuracy of CNN and SVM on 
the bearing seat measurement points. Both reached more than 

99 %. It can be seen from Fig. 12 that with the three methods 
of fault classification using CNN, the classification accuracy 
rate increases with the increase of the number of iteration 
steps, but the convergence speed of the proposed method is 
faster. 

From Fig. 13, the feature distribution extracted by the first 
layer of the convolutional neural network is relatively chaotic, 
as shown in Fig. 13(a). After multiple convolutional layers and 
fully connected layers, the final classifier can extract the convo-
lutional neural network well. The features are effectively classi-
fied. 

 
4.5.3 Fault classification results on machine points 

As shown in Table 5, the fault classification accuracy of SVM 
on the horizontal and vertical measuring points is 86.16 % and 
88.73 %, respectively, and the fault classification accuracy 
based on the convolutional neural network algorithm is signifi-
cantly higher than that of the support vector machine. As a 
result, the lowest fault classification accuracy rates of the hori-
zontal and vertical points are: 92.44 % and 90.03 %, respec-
tively. 

It can be seen from Fig. 14 and Table 5 that the average ac-
curacy of the proposed method at the horizontal and vertical 
measuring points reaches 96.32 % and 95.82 %, respectively, 
and is higher than the other two combinations. The results 

Table 5. Fault classification result of casing signal. 
 

Accuracy/ % 
Measuring point 

CNN+MDM CNN+KDM CNN+WSS SVM 

Vertical measuring 
point 92.44 93.58 96.32 86.16

Horizontal measuring 
point 90.03 92.17 95.82 88.73

 

 
(a) Vertical measuring point 

 

 
(b) Horizontal measuring point 

 
Fig. 14. Fault classification result of casing signal. 

 

 
(a) Feature distribution map extracted from the first convolution layer 

 

 
(b) Feature classification result graph 

 
Fig. 15. Classification of bearing casing signal characteristics. 
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show that the method described in this paper has better bear-
ing fault diagnosis results. In particular, the experimental data 
is the bearing vibration signal collected on a casing with a real 
aero-engine structure. The fault characteristics of the signal are 
very weak due to the influence of the transmission path and 
other noise. The fault identification accuracy of the proposed 
method further proves that the proposed method has good 
generalization ability and fault recognition rate. 

From Fig. 15, the method proposed in this paper can effec-
tively classify the fault of the receiver signal. As the network 
layer of the convolutional neural network is closer to the front 
end, the features extracted are more general, and the features 
extracted from the neural network layer closer to the end are 
more specialized. After multiple layers of convolutional layers 
and pooling layers, more abstract deep features can be ex-
tracted for fault classification. It further proves the effectiveness 
of the method proposed in this chapter for the diagnosis of 
weak signals in the receiver. 

 
5. Conclusion 

The rolling bearing fault diagnosis method based on wavelet 
scale spectrum and convolutional neural network combines the 
depth feature and pattern recognition of automatic learning, 
effectively solves the problem of insufficient shallow feature 
representation of vibration signals, and avoids artificial features 
extraction to rely on experience and expertise. The main fea-
tures of the method proposed in this paper are: 

(1) Converting the vibration signal into a two-dimensional im-
age; giving full play to the advantages of CNN in the field of 
image recognition; 

(2) After research, it is found that using the time-frequency 
characteristics of the wavelet scale spectrum, the fault features 
can be adaptively learned through CNN, and the dependence 
of artificial extraction features on expert knowledge is avoided. 
The results show that the proposed method has better fault 
recognition rate and generalization ability. 
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