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a b s t r a c t

This paper proposed a method for exact selecting the optimal filter length of minimal entropy
deconvolution (MED) to solve it recovering a single random pulse when the filter length is not
improper. The energy ratio of autocorrelation between the filtered signal and the residual signal
is adopted to measure the salience of periodic impulses. Then this index is used as an objective
function of genetic algorithms (GA) to form an adaptive optimal selection method of filter length.
The proposed method is verified by two different rolling bearing fault experiments. The results show
that the proposed method reveals the periodic impulses successfully from the casing signals. Compared
with other MED-based methods, the proposed method has better performance in detecting the weak
fault signal.

© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The failure of rolling bearing is one of the common causes
f fault and accident in rotating machinery. Quasi-periodic or
eriodic impulses are considered as an important sign of rolling
earing fault [1]. Extracting periodic fault features from the vi-
ration signal is a key step in the diagnosis process. However,
wing to the noise interference of other mechanical components
nd the effect of the transmission path, the fault features of
olling bearings are very weak in some cases. In order to solve
his problem, blind deconvolutions are introduced to recover
he weak impact characteristics, among which Minimal Entropy
econvolution (MED) is one of the classical methods.
MED was first proposed by Wiggins [2] to enhance the seis-

ic reflection signal. It aims to maximize the kurtosis of weak
mpulses and minimize the kurtosis of other noise components.
awalhi et al. [3] first demonstrated its effectiveness when ap-
lied to bearings fault detection. Subsequently, MED has been
idely used in rotating machinery [4–6]. However, there are
ome problems with the MED. The goal of the filter is to max-
mize the kurtosis of the signal, but excessive kurtosis results
n a single random large pulse. Besides, MED is very sensitive
o the filter length, which will affect its output seriously. Some
esearchers were devoted to improving the objective function
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E-mail addresses: hzy2017@nuaa.edu.cn (Z. He), cgzyx@263.net,

zy2017@nuaa.edu.cn (G. Chen).
ttps://doi.org/10.1016/j.isatra.2020.10.010
019-0578/© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
of the algorithm, such as changing kurtosis to skewness [7,8],
correlation kurtosis (MCKD) [9], D-norm (OMEDA), multi-D-norm
(MOMEDA) [10], impulse norm (MIND) [11] and autocorrelation
impulse harmonic to noise (AIHN) [12] and so on. Other re-
searchers focused on optimizing the filter coefficients in MED
with some algorithms. For instance, Cheng et al. [13] combined
the particle swarm optimization (PSO) algorithm with MED to
optimize filter coefficients. Jiang et al. [14] proposed a method to
optimize the filter coefficients of MED using the l0-norm. These
above methods have achieved remarkable results in bearing fault
diagnosis.

However, there are few discussions on the exact selection of
the filter length. When the filter length is not suitable, MED tends
to change the periodic impulse component into a random single
pulse component. Essentially, MED is a filter, so the above meth-
ods need to set the filter length in advance. The literature [15]
shows that as the filter length is longer, the kurtosis value of the
signal is larger, but in its research results, only a range of the filter
length was obtained based on the experimental data, and there
was no accurate filter length selection scheme. Refs. [13,16] used
an empirical formula to determine the size of the filter length,
but the scope of this formula is relatively rough. Li et al. [17]
established the modified power spectrum kurtosis (MPSK) index
to form an adaptive MED and successfully diagnosed the fault
bearing of the wind turbine with the combination of time-delayed
feedback monostable stochastic resonance. Nevertheless, the re-
sults of filtering are not very ideal and the effects of different filter

lengths on fault signals are not discussed in detail. Besides, in
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ome studies, when using the MED method for fault diagnosis,
he filter length is obtained based on experience [18] or does
ot consider the effect of the filter length [19–21]. Therefore,
method of automatically selecting the optimal filter length of
ED is proposed to enable the MED to enhance the periodic

mpulses as much as possible, and avoid causing a single random
oise pulse. It uses the autocorrelation function to establish an
nergy determination index, which can measure the periodicity
f fault characteristics for maximizing the separation of peri-
dic impulses and noise. Then, taking the proposed index as
n objective function, the optimal filter length is obtained by
enetic algorithms (GA). Through the run-to-failure test of rolling
earing and the aero-engine rotor fault experiments that far away
rom the vibration source of the bearing, it is fully verified that
he proposed method can enhance the weak fault features at
he accurate filter length and avoid misdiagnosis caused by an
nappropriate selection of the filter length. The main contribution
f this paper is that we propose a method to accurately select the
ilter length of MED, which can improve the accuracy of MED in
eak fault diagnosis, and give full play to the potential of MED in
ecovering the weak periodic impulse, especially when far away
rom the fault vibration source.

The structure of this paper is as follows: Section 2 reviews
he algorithm of MED and shows the effects of different filter
engths on the outputs. Section 3 gives the detailed steps of the
roposed method. Section 4 introduces two sets of rolling bearing
ault experiments and verifies the effectiveness of the proposed
ethod. Section 5 compares the results of the proposed method
ith PSO-MED and MCKD. Discussions and some conclusions are
iven in Section 6 and Section 7, respectively.

. Minimal entropy deconvolution

.1. Review of MED

As shown in Fig. 1, s is the fault periodic impulses, n is the
oise, h represents the influence of system harmonics and trans-
ission path. The observation signal x collected by the vibration
ensor can be expressed as:

= (s + n) ∗ h (1)

where * is the convolution, MED assumes that the system input
s is a sparse pulse sequence, which has a small entropy value,
but the entropy of x increases after passing through the system.
So deconvolution is to find a finite impulse response (FIR) filter f
whose length is L, and the y after the filter can approximate the
input s of the original system, namely:

y (j) =

L∑
l=1

f (l) x (j − l) ≈ s (j) j = 1, 2, . . . ,N (2)

The implementation of MED mainly includes the eigenvector
ethod and objective function method. The objective function
ethod is widely used, which can be realized by solving kurtosis,

hat is:

4 [f (l)] =

N∑
j=1

y4 (j)

/⎡⎣ N∑
j=1

y2 (j)

⎤⎦2

(3)

is the length of data. The best filter can be obtained by making
ts first derivative is 0, namely:

O4 [f (l)] /∂ f (l) = 0 (4)

The matrix form of Eq. (2) is:

= X T f (5)
0

270
Fig. 1. The flows of blind deconvolution.

where: X0 =

⎡⎢⎢⎢⎢⎣
x1 x2 x3 · · · · · · xN
0 x1 x2 · · · · · · xN−1
0 0 x1 · · · · · · xN−2
...

...
...

. . . · · ·
...

0 0 0 · · · · · · xN−L+1

⎤⎥⎥⎥⎥⎦
L×N

, substituting

Eqs. (3) and (4) into Eq. (5) gives:

f =

∑N
j=1 y

2
j∑N

j=1 y
4
j

(
X0X T

0

)−1 X0
[
y31y

3
2 · · · y3N

]T
(6)

MED specific flow paths are as follows:
(1) Initialize f (0)

= (0, 1, 0, . . . , 0)T meanwhile input the raw
signal x to get X T

0 .
(2) Set filter length L, the maximum count of iterations mmax,

and convergence error ς .
(3) According to Eq. (5), calculating ym (j) by substituting X T

0
and filter coefficient f m (l), then get the f m+1 (l) by Eq. (6).

(4) According to Eq. (3), calculate the error ∆E =

O4(f (m+1)) − O4(f (m))
⏐⏐.

(5) If m < mmax and ∆E < ς , continue cyclic iteration from
tep. (3), otherwise, output the final filter coefficient f end (l) and
end (j) is outputted according to Eq. (5).

.2. The effect of filter length on enhancing the periodic impulses

In order to show the importance of filter length L in MED more
ntuitively, a simulation signal as shown in Fig. 2 is established:

(t) = s (t) + n (t) + h (t) (7)

Fig. 2(a) shows the fault impulses whose fault-sampling inter-
vals are 30 points. n (t) is the white Gaussian noise and mixed
with the fault signal as shown in Fig. 2(b) and the energy ratio of
impulses to noise is 0.22. Fig. 2(c) shows the observation signal
x (t), in which the harmonic component h (t) = 0.1 sin (2π f1t) +

0.2 sin (2π f2t) + sin (2π f3t) , f1 = 4f2 = 2f3 = 1/15. The length
of the signal is 2000.

The observation signal is filtered by MED at the filter length
L = 150 and 151, respectively. The results are shown in Fig. 3.
When L = 150, the output signal is a single random pulse, which
is not we want because we expect to recover a series of periodic
fault features from the weak signal for the detection of rotating
machinery, so it is useless. However, in the case of L = 151,
the periodic impulses are very clear. It is remarkable that the
difference between the two filter length values is only 1, but their
outputs are entirely different. This phenomenon shows that the
filter length has a great influence on the output of MED. Choosing
a suitable filter length is a key step in the MEDmethod. In order to
avoid the occurrence of single pulse maximization, it is necessary
to study the method of choosing filter length accurately, because
the experience may bring the wrong result.

3. Selection of the optimal filter length

To give full play to the potential of MED to enhance the
weak periodic impulses, it is necessary to establish the objective
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Fig. 2. The simulated fault signals. (a) Fault impulses; (b) Noise with fault impulse; (c) Observation signal.
Fig. 3. The filtered signals using MED with different filter lengths. (a) L = 150; (b) L = 151.
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unction to measure the periodicity of the output signal. In this
aper, autocorrelation function and signal energy are used to
olve the problem of selecting the optimal filter length.

.1. Autocorrelation analysis

Autocorrelation analysis reflects the similarity of the signal it-
elf at different moments or phases, which is an effective method
o determine whether the signal has periodicity. Suppose s (t) is a
inusoidal periodic signal to be measured. n (t) is Gaussian white
oise. The observation signal is:

(t) = s (t) + n (t) = A sin (ω0t + φ) + n (t) (8)

Doing autocorrelation analysis on x (t) gives that:

x (τ ) = E [x (t) x (t − τ)] = Rs (τ ) + Rn (τ ) + Rsn (τ ) + Rns (τ ) (9)

n fact, n (t) and s (t) are independent of each other, so Rsn (τ ) =

ns (τ ) = 0, that is:

x (τ ) = Rs (τ ) + Rn (τ ) = lim
T→∞

1
2T

∫ T

−T
[s (t) s (t − τ)] dt + Rn (τ )

=
A2

2
cos (ω0τ) + Rn (τ ) (10)

here A is the amplitude, ω0 is the angular frequency, φ is the
nitial phase. Since n (t) is noise, Rn (τ ) is concentrated aroundτ =

as shown in Fig. 4. Rs (τ ) is a signal with the same ω0 as s (t)
from Eq. (9). When τ becomes larger, Rx (τ ) only reflects Rs (τ ),
so the amplitude and frequency of s (t) can be obtained byRx (τ )
as shown in Fig. 5.
 m

271
3.2. Establishment of the objective function

The limitation of MED is that iterative calculation can only be
performed under a specific filter length, so the outputs of differ-
ent filter lengths are different. The main purpose of the objective
function is to establish an index to measure the periodicity of the
output signal at different filter lengths.

Assuming that given a priori filter length L, the output signal
is yL, then the remaining components of the raw signal are
expressed as:

SL = xN − yL (11)

xN is the raw signal. The objective function can be defined as:

Lµ =

∑N
n=1 RyL

2(n)∑N
n=1 RSL

2(n)
(12)

here N is the length of data, RyL (·) represents the autocorre-
ation of the output signal, RSL (·) represents the autocorrelation
f the residual components. When the output signal approaches
he periodic impulse, its autocorrelation is also approximately a
eriodic signal. At this moment, MED maximizes the kurtosis of
he continuous weak impulses, which also suppresses the system
armonics and noise. Therefore, the energy ratio of the output
ignal to the residual signal will be a larger value. Conversely,
hen the output signal is a single pulse, except for an impact
haracteristic of the larger amplitude at a certain time in the time
omain waveform, most of the residual part is the noise, so in
ts autocorrelation waveform, the amplitude mainly appears at 0
oments. The amplitudes at the other moments are very small
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Fig. 4. The autocorrelation analysis of Gaussian white noise.
Fig. 5. The autocorrelation analysis of periodic signal with noise.
nd close to 0. Thus, the energy ratio will be a smaller value.
he magnitude of Lµ can be used as a basis for judging whether

the output result is a periodic pulse. To eliminate interference,
remove the amplitude of autocorrelation at 0 moments. There
is an example to illustrate the superiority of the Lµ index. For
he simulation signal of Eq. (7), Fig. 6 plots the kurtosis and Lµ

f the MED-filtered outputs from L = 2 to L = 500. It can be
seen from Fig. 6(a) that as the filter length increases, the value of
kurtosis also increases, which is consistent with the conclusion
given in Ref. [15]. This result is not difficult to understand because
the objective function in MED aims to maximize the kurtosis of
the signal. Kurtosis is a good indicator of impact characteristics.
However, the variation of kurtosis is not related to whether the
output signal is the continuous impulses so the kurtosis is not the
bigger the better in MED. It can easily raise a single large pulse to
satisfy the case of high kurtosis of the whole signal. Therefore, to
avoid such a situation, it is particularly important to obtain the
periodic impact signal when kurtosis value is as large as possible.
Fig. 6(b) plots the variation of Lµ under different filter lengths.
The overall trend of Lµ is to go up first then down to stabilize.
When L = 150 and L = 151, the outputs are hugely different as
shown in Fig. 3. Fig. 7 shows the outputs at L = 50, 167 and 168,
respectively. It can be seen from the results that the larger the
Lµ is, the better the filtered effect and the stronger the periodic
impact feature is. After L = 168, Lµ tends to decline steadily,
which means that the outputs will be the single pulse and MED
will lose the ability to enhance the periodic weak signal. So Lµ

can be regarded as the objective function to optimize the length
of the MED filter.

3.3. Global optimization of genetic algorithms

Genetic algorithms (GA) is a kind of self-organizing and adap-

tive artificial intelligence technology that simulates the biological

272
evolution process and mechanism of nature to solve extreme
value problems. It was proposed by Holland [22] and has a wide
range of applications [23–25]. In the field of fault diagnosis, GA
also has excellent results [26,27]. In MED, the filter length can
be any integer less than the raw signal length. Therefore, in this
paper, the main function of GA is to search the maximum value
of Lµ under the global filter length.

GA mainly includes the following contents: defining the popu-
lation, coding individuals, calculating individual fitness (objective
function), selection (heredity), crossover, and mutation. The main
steps of the genetic algorithm are: (1) Randomly generate M
individuals as an initial population. (2) Calculate the fitness of
each individual in the population. (3) Selection operation, the
purpose is to select some excellent individuals to pass them on
to the next generation. (4) Each individual in the population is
randomly matched to exchange part of their chromosomes with
a certain probability, and each individual has a certain probability
of mutation. (5) After multiple evolutions (iterations), the best
individuals are finally preserved.

This study uses the binary method to encode the individuals of
the populations. The objective function is in Eq. (11). ‘‘Roulette’’
algorithm is used for the selection of the population, that is:

p (xi) =
f (xi)∑N
j=1 f

(
xj
) (13)

The probability of each individual xi being selected isp (xi).
f (xi) is the fitness calculated by the objective function. The cu-
mulative probability of each individual is:

Q (xi) =

i∑
k=1

p (xk) (14)

Randomly generatedr ∈ [0 , 1], if Q (xi) > r , select xi. The
probabilities of crossover and mutation are 0.6 and 0.001 respec-
tively [28].
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Fig. 6. (a) Kurtosis and (b) Lµ of the outputs at different filter lengths.
Fig. 7. The outputs at different filter lengths. (a) L = 50; (b) L = 167; (c) L = 168.
Fig. 8 discusses the effect of populations on search results.
The population sizes are 25, 50, 75, and 100, respectively. The
number of iterations is 100. The results in Fig. 8(a) illustrates
that the mean fitness is not optimal in a small population. As the
population increases, the mean fitness will gradually approach its
maximum. The optimal filter length and mean fitness is L = 162,
Lµ = 0.328, which is consistent with the result in Fig. 6(b). There
is a logarithmic trend between population growth and fitness
function in Fig. 8(b), which indicates that when the population
reaches a certain degree, the mean fitness will reach a mature
state. Fig. 9 shows the outputs under the optimal search of four
populations. From the corresponding filtering effects, even if the
small population does not reach the maximum value of the fitness
Lµ, some better periodic impulses can be obtained. This is because
GA is always looking for the ‘‘optimal’’ solution in a limited
population, so there is no need to worry about the situation
where the fitness Lµ is very low and the filtered result becomes
a single impulse. So, this is the reason why this paper chooses
the GA method for global optimization. In order to achieve better
results, both the population size and the number of iterations are
set to 100 in this study.

According to the above analysis, the specific flows of the MED
optimal filter length selection method proposed in this paper are

shown in Fig. 10, as follow steps:

273
(1) Set the parameters of GA and randomly generate popula-
tions (filter lengths) and binary encode them. The encoding length
depends on the length of the raw signal.

(2) Take Lµ as the objective function to calculate the fitness
of each individual. Form new populations after crossover and
mutation.

(3) After N iterations or reaching the iteration error, output
the best individual to get the filter length.

4. Application in fault detection of rolling bearing

When the bearing raceway is damaged, such as peeling, crack-
ing, pitting, etc. impact vibration is usually generated when a
rolling element passes, resulting in a series of periodic or quasi-
periodic impacts. These impulses are mixed with system noise.
Due to the limitations of the structure transmission path and
the sensor position, in the collected signal, the impact charac-
teristics will be very weak. To fully illustrate the advantage of
the proposed method, this section is verified by rolling bearing
failure experiments in two sets of situations. The first one is the
run-to-failure test of rolling bearing provided by the IMS center,
aiming at verifying the diagnostic ability of the proposed method
under the strong background noise interference in the early stage
of fault initiation. The second is the fault experiment of rolling

bearing using an aero-engine rotor experimental rig with casing.
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Fig. 8. The effect of populations on search results. (a) Optimal filter length under different populations (iterations 100). (b) Mean fitness in different populations.
Fig. 9. The outputs of different populations. (a) pop = 25, L = 69; (b) pop = 50, L = 98; (c) pop = 75, L = 153; (d) pop = 100, L = 162.
etecting the casing signal to simulate the attenuation of the fault
haracteristics by the transmission path, the superiority of the
roposed method is verified.

.1. Detection of run-to-failure test

The test data are generated by the IMS center (www.imscenter.
et). The test rig in Fig. 11 consists of four bearings mounted
n the shaft, which is connected to the motor by a friction belt.
he bearings are Rexnord ZA-2115, whose dimensions are given
n Table 1. The radial load on the bearing was 6000 lps and
he rotation speed was 2000 rpm. PCB 353b33 ICP acceleration
ensors were placed on each bearing housing with a sampling
requency of 20.48 kHz. The number of sampling points for each
ecord was 20480 and the sampling interval was 10 min. More
etails can be found in Ref. [29].
After 984 records were collected, the outer race of No. 1 bear-

ng failed. The root means square (RMS) value of No. 1 bearing
s shown in Fig. 12. Set the failure threshold as λ = µ + 3σ . µ

nd σ are the mean and variance of RMS of the first 200 normal
274
Table 1
Rexnord ZA-2115 bearing dimensions (unit: mm).
Type Pitch diameter Diameter of roller Roller number Contact angle

ZA-2115 71.5 8.4 16 15.17◦

records respectively. At 533 record, the RMS value is outside
the threshold range indicating that the bearing condition has
changed. Therefore, the vibration signal at 533 record is selected
as the sample of detection and its time domain waveform is
shown in Fig. 13. In the research of Ref. [18], 533 record is also
taken as the sign of early failure. However, when the MED+SK
(Spectral kurtosis) +SES (Square envelope spectrum) method was
applied to detect 533 record, no-fault characteristic frequency of
the bearing was found in Fig. 14. The authors in Ref. [18] set the
filter length of the MED as 1000 based on experience. Fig. 15(a)
plots the output of MED at the filter length of 1000. It can be
seen that a single large pulse has appeared at this time, which
indicates that the MED has lost the ability to enhance the periodic
impact features. For SK method, it is very sensitive to kurtosis.

http://www.imscenter.net
http://www.imscenter.net
http://www.imscenter.net
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Fig. 10. The process of selecting the optimal filter length.
Fig. 11. Run-to-failure test rig.

Random single large pulse will interfere with its detection effect.
Consequently, its detection result is bound to fail. Fig. 15(b) shows
the envelope spectrum of Fig. 15(a) which is filled with abundant
noise and no conspicuous BPFO (236 Hz) in the spectrum.

According to the above analysis, the early failure characteris-
tics of the bearing cannot be detected at 1000 filter length. Next,
using the proposed method in this paper to detect the 533 record.
The optimal filter length is L = 61, Lµ = 0.452 by GA global
ptimization which is shown in Fig. 16(a). Fig. 16(b) is the result
f the objective function Lµ in the range of 2–2000 filter length.
t can be seen that the value of Lµ is 0.184 when the filter length
s 1000. The small value indicates that the MED has failed. The
utput of MED with L = 61 is in Fig. 17. Although there are
till noises in the time domain waveform, the useful information
emains in the signal. Moreover, in its envelope, we can see
he obvious BPFO and its harmonic components. In addition, the
ethod of MED+SK+SES is used to detect 533 record at L = 61.
rom the result of Fig. 18, the BPFO is also conspicuous. Conse-
uently, MED can extract the early fault features of No. 1 bearing
275
in the case of optimal filter length. Conversely, inappropriate filter
length will lead to an erroneous result.

4.2. Detection of weak fault casing signal

In some cases, the vibration sensors will not be installed close
to the bearings because of the complex internal structure, such
as in aero-engine, so they will be placed on the casing. Because
of the transmission path and other structural noise, the bearings’
fault information will become even weaker after being transmit-
ted to the casing, which brings great challenges to the detection.
In order to verify the contribution of the proposed method in
eliminating the effect of the transmission path, an aero-engine
rotor test rig with the casing is built to simulate the situation far
away from the bearing vibration source.

The aero-engine rotor test rig is very close to a real aero-
engine as shown in Fig. 19. Its typical features are as follows: (1) It
has a multi-segment casing with a ratio of 1:3 to the real engine.
(2) The internal structures are simplified. Two disks with blades
represent the compressor disk and the turbine disk respectively
and two bearings are installed between them. The compressor
end is roller bearing and the turbine end is ball bearing. (3) The
support stiffness can be adjusted by changing the elastic support
position. (4) The rotor without the combustion chamber structure
is driven by the motor.

The faulty ball bearings whose type is HRB 6206 in Fig. 20 were
installed at the turbo end respectively. The width and depth of
the wire-electrode cutting cracks on the outer and inner races are
both 2 mm. The crack on the ball is 1 mm width and 2 mm depth.
Table 2 gives the dimensions of the bearings. Two B&K4805 ICP
acceleration sensors were placed on the vertical and horizontal
directions of the casing respectively and one was attached to the
bearing housing, as shown in Fig. 21. Fig. 22 shows the vibration
transmission path from the bearing housing to the casing, that
is: ball bearing — squirrel cage — elastic support — turbo stator
— casing (sensors). The distance is longer than the engine radius
(180 mm). The sampling rate was 10.24 kHz and each data
contain 8192 points. The bearing housing signal and casing signal
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Fig. 12. The RMS of bearing No.1.
Fig. 13. The time domain waveform of 533 record.
Fig. 14. The detection result of MED+SK+SES in Ref. [18] (MED filter length is 1000).
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Table 2
6206 ball bearing dimensions (unit: mm).
Type Pitch diameter Diameter of ball Ball number Contact angle

6206 46 9.5 9 0

were collected for detection respectively. The rotation speeds
were 1500 rpm.

For the outer race fault bearing, Fig. 23 draws the time domain
aveforms and envelope spectra of the bearing housing signal
nd the casing vertical measuring point signal. The fault feature
f bearing housing is highlighted. In the time domain waveform,
ig. 23(a), it has clear periodic impulses and large amplitude. In
he envelope spectrum, Fig. 23(c), BPFO (92 Hz) and its harmonics
re obvious. However, for the casing signal, the impulses are
asked by a large amount of noise in Fig. 23(b). The amplitude
ecays nearly 10 multiples. The BPFOs in the Fig. 23(d) are cov-
red by other frequencies. Thus, it is difficult to directly detect
276
the fault information of the casing signal that far away from the
vibration source.

In order to overcome the above problem, the proposed method
is used to detect the casing signal. After GA global search, the
result of the optimal filter length is L = 157, Lµ = 0.362 as
shown in Fig. 24(a). Fig. 24(b) depicts the variation of Lµ under the
–500 filter length where the effective filter lengths are limited
nd the values of Lµ are less than 0.1 at most filter lengths. To
llustrate the advantage of the proposed method more visually,
he optimal filter length (L = 157) and the low Lµ value filter
ength (L = 154) are selected for comparison as shown in Fig. 25.
ig. 25(a) is the time domain waveform after optimal filter length
iltered and Fig. 25(b) is its envelope spectrum. From the results,
he periodic fault impulses have been fully enhanced. The BPFO
nd its harmonics are conspicuous. Compared with Fig. 23(c), the
armonics of 3BPFO and 4BPFO are more prominent. However,
n the case of L = 154, the results are totally different. A single
harp impulse is in Fig. 25(c) and there are no fault features in
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Fig. 15. The output result of 533 record at filter length 1000. (a) Time domain waveform; (b) Envelope spectrum of (a).
Fig. 16. The selection of optimal filter length for 533 record. (a) Results of GA optimization; (b) The value of Lµ .
its envelope, which is not the result we expected. Therefore, a
suitable filter length is vital.

Similarly, for the inner race fault bearing, the horizontal mea-
suring point signal of the casing is selected for analysis. Fig. 26
shows the comparison between the bearing housing signal and
the casing signal. In Fig. 26(a) the fault periodic impulses are obvi-
ous and their amplitudes are large. In its corresponding envelope
spectrum Fig. 26(c), the ball pass frequency on inner race (BPFI
= 135 Hz) and its harmonics can be seen clearly, and there is
a phenomenon of rotation modulation (fr = 25 Hz). However,
in Fig. 26(b), the periodic impulses are submerged by noise and
the amplitude has decreased nearly 20 multiples. In the envelope
spectrum, as shown in Fig. 26(d), BPFIs are not recognized. These
above results indicate once again that the fault features in the
casing signal are very weak.

We use the method proposed in this paper to diagnose the
casing signal of inner race fault. The results of the optimal filter
277
length after GA optimization are shown in Fig. 27. The optimal
filter length is L = 100, Lµ = 0.236. At this filter length,
the output of the inner race fault is plotted in Fig. 28(a) where
the continuous impulses in the casing signal are more obvious
compared with Fig. 26(b). In the envelope spectrum, Fig. 28(b),
The BPFI, 2BPFI, and 3BPFI are all conspicuous and the rotation
modulation exists. However, the situations are quite different
when L = 101. MED cannot recover the periodic impulses. The
time domain waveform appears as a large single impact due to
improper filter length in Fig. 28(c). The BPFI and its harmonics
are inapparent.

As for the ball fault bearing. Fig. 29 depicts the detection
results of the bearing housing signal and the casing signal. The
situation is the same as the outer race fault and inner race fault.
The fault feature of bearing housing is prominent but the casing
signal has no fault information. Note that in Fig. 29(c) the even

harmonics of ball spin frequency (BSF) are dominant in particular
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Fig. 17. The output result of 533 record at optimal filter length. (a) Time domain waveform; (b) Envelope of (a).

Fig. 18. The results of MED+SK +SES at optimal filter length.

Fig. 19. Aero-engine rotor test rig. (a) Side view (b) Sectional view.
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Fig. 20. 6206 ball bearing of outer race fault, inner race fault and ball fault.
Fig. 21. The locations of bearing housing measuring point and casing measuring points.
Fig. 22. The vibration transmission path from bearing housing to casing (turbo
nd section).

n the envelope spectrum [1]. The 2BSF is 115 Hz with the cage
requency modulation (second harmonic, fc = 20 Hz).

Fig. 30 plots the results of optimal filter length after GA op-
imization. The best fitness value of Lµ is 0.176 and the optimal
ilter length is 46. Fig. 31(a) is the time domain waveform after
ED filtered at optimal filter length. Its envelope is in Fig. 31(b).
rom the results, the impulses in the casing signal have been
nhanced and 2BSF can be found in the envelope spectrum. How-
ver, the cage modulation frequency cannot be seen obviously.
ecause the ball has great randomness and slip in the process of
otation, and the ball crack is relatively small, which makes its
mpacts less intense than the outer race fault and inner race fault.
279
When the filter length is 76, there is no fault information in the
envelope, which indicates that MED has lost the detection ability.

According to the detection results of casing signals, it is clearly
stated that the selection of the length of the MED filter is ex-
tremely important to the output result. Appropriate filter length
can fully enhance the continuous periodic impulse characteris-
tics, while wrong filter length will make MED lose its ability to
recover the impacts in weak signals, which will bring adverse
consequences for the diagnosis of bearing fault. The proposed
method in this paper can avoid this problem well.

5. Comparison with other MED-based methods

At present, there are two main ways to improve MED: opti-
mizing the filter coefficients [13,14] and transforming kurtosis
into other objective functions [7–12]. In this section, to further
illustrate the advantages of the proposed method, two advanced
detection methods, PSO-MED and MCKD method were selected
for comparative analysis.

5.1. Comparison with PSO-MED

Cheng [13] proposed an improved MED method based on
particle swarm optimization (named PSO-MED). In this method,
the filter coefficients are transformed into generalized spherical
coordinates, and the standard PSO is used to calculate the optimal
solution. It shows that the PSO-MED outperformed MED when the
signal-to-noise ratio is low. For the sake of fairness, the parame-
ters of PSO-MED in this article are the same as those in Ref. [13].
Besides, PSO-MED needs to set the filter length in advance, so
the optimal filter lengths proposed in this paper are selected to
detect the 533 record and the casing signals. The MATLAB codes
of PSO-MED can be downloaded from the Mendeley data [30].

Fig. 32 shows the envelope spectrum of 533 record after
PSO-MED filtered. We can see the BPFO and its harmonics are
apparent, which indicates that PSO-MED has good performance
in the detection of 533 record. However, the results are not ideal
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Fig. 23. The time domain waveforms and envelope spectra of the outer race fault. (a) Bearing housing; (b) Casing vertical measuring point signal; (c) Envelope
spectrum of (a); (d) Envelope spectrum of (b).

Fig. 24. The selection of optimal filter length for casing signal of the outer race fault. (a) Results of GA optimization; (b) The value of Lµ .

Fig. 25. The output results of the outer race fault casing signal at different filter lengths. (a) Time domain waveform, L = 157 (optimal); (b) Envelope spectrum of
(a); (c) Time domain waveform, L = 154; (d) Envelope spectrum of (c).
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Fig. 26. The time domain waveforms and envelope spectra of the inner race fault. (a) Bearing housing; (b) Casing vertical measuring point signal; (c) Envelope
spectrum of (a); (d) Envelope spectrum of (b).

Fig. 27. The selection of optimal filter length for casing signal of the inner race fault. (a) Results of GA optimization; (b) The value of Lµ .

Fig. 28. The output results of the inner race fault casing signal at different filter lengths. (a) Time domain waveform, L = 100 (optimal); (b) Envelope spectrum of
(a); (c) Time domain waveform, L = 101; (d) Envelope spectrum of (c).
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Fig. 29. The time domain waveforms and envelope spectra of the ball fault. (a) Bearing housing; (b) Casing vertical measuring point signal; (c) Envelope spectrum
of (a); (d) Envelope spectrum of (b).

Fig. 30. The selection of optimal filter length for casing signal of the ball fault. (a) Results of GA optimization; (b) The value of Lµ .

Fig. 31. The output results of the ball fault casing signal at different filter lengths. (a) Time domain waveform, L = 46 (optimal); (b) Envelope spectrum of (a); (c)
Time domain waveform, L = 76; (d) Envelope spectrum of (c).
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Fig. 32. The envelope spectrum of 533 record processed by PSO-MED.
Fig. 33. The output of the outer race fault casing signal processed by PSO-MED. (a) Time domain waveform; (b) Envelope spectrum of (a).
Fig. 34. The output of the inner race fault casing signal processed by PSO-MED. (a) Time domain waveform; (b) Envelope spectrum of (a).
Fig. 35. The output of the ball fault casing signal processed by PSO-MED. (a) Time domain waveform; (b) Envelope spectrum of (a).
in diagnosing the casing signals. Fig. 33 is the detection results
of the outer race fault casing signal processed by PSO-MED. From
the time domain waveform of Fig. 33(a), there is no continuous
periodic impulse compared with Fig. 25(a). Although the BPFO
and its harmonics can be seen in Fig. 33(b), there are filled with
other noise frequencies and the fault features are very weak
compared with the results in Fig. 25(b). As for the casing signal
of the inner race fault, the results are shown in Fig. 34. It can be
observed that there are some prominent impulses in Fig. 34(a).
Nevertheless, BPFI and 2BPFI are not observable in Fig. 34(b).
The same situation occurs in the detection results of ball fault as
283
shown in Fig. 35. These above results indicate that PSO-MED is
not satisfactory in detecting signals that far away from the fault
source.

5.2. Comparison with MCKD

Maximum correlated kurtosis deconvolution (MCKD) was pro-
posed by McDonald et al. [9]. Based on MED, the main idea of
the MCKD is to transform the kurtosis objective function into the
correlation kurtosis (CK) objective function to enhance the fault
impulses of a specific period. The most sensitive parameter in
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Fig. 36. The envelope spectrum of 533 record processed by MCKD.

MCKD is the fault period T. An inaccurate T will generate the
eriodic impulses which are unrelated to the fault and interfere
ith the diagnosis results. Therefore, to make it fair and ensure
hat MCKD can get the best results, the parameter T is the corre-
ponding bearing fault characteristic period, that is T = fs/BPFO
(or BPFI, 2BSF). fs is the sampling frequency. For 533 record, T
is 86.7. For the casing signals, the T of outer race fault is 111.3.
The T of inner race fault is 75.8 and the T of ball fault is 89.
Additionally, shift order M is 5 and all the signals are filtered at
the same optimal filter length as MED.

Fig. 36 is the envelope spectrum of 533 record processed by
MCKD. We can see that MCKD can extract BPFO, but it is limited
in the extraction of harmonic fault features. The time domain
waveform of outer race fault casing signal after MCKD filtered and
its envelope spectrum is presented in Fig. 37(a) and Fig. 37(b),
respectively. Compared with the result in Fig. 25, the fault im-
pulse characteristics are not obvious in the time domain and there
are still some noise frequencies on the spectrum. Nevertheless,
it is better than the result of PSO-MED in Fig. 33. Fig. 38 plots
the results of inner race fault casing signal filtered by MCKD. We
can observe Fig. 38(b) that BPFI has only one weak peak and no
harmonics or rotation modulation. And in the result of the ball
fault casing signal, the fault feature cannot be found as shown
in Fig. 39. From the above results, MCKD is not as effective as
the proposed method in this paper when diagnosing the casing

signal.
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To quantitatively illustrate the advantages of the proposed
method, an index named as the characteristic frequency of the
envelope (cfe) is used to confirm the superiority of the proposed
method. This index has a good ability to distinguish fault levels.
And similar indexes were used to evaluate the detection ability
of their proposed methods in the Refs. [11,14]. cfe is calculated as
follows:

cfe =

1
M ·

∑M
i=1 A (i · ffault)

1
N ·

∑N
i=1 A (fi)

=
N ·

∑M
i=1 A (i · ffault)

M ·
∑N

i=1 A (fi)

here A (f ) is the amplitude at the frequency f in the envelope
spectrum. ffault denotes the fault frequency. M is the multiple of
ffault and its value in this paper is set as 3. N is the number of spec-
tral lines in the envelope spectrum. In the calculation process, the
search bandwidth based ffault is [−5, 5] Hz and N is 500. Fig. 40
shows the quantitative comparison of cfe between the proposed
method with PSO-MED and MCKD. It can be summarized as
follows:

(1) The fault characteristics of the bearing housing signals
are very strong. However, the fault characteristics of the casing
signal have a serious attenuation because of the transmission
path. Besides, among the three fault modes, the outer race fault
is the strongest, while the ball fault is the weakest.

(2) The proposed method eliminates the influence of the trans-
mission path and recovers the fault characteristics of the casing
signals well. Its detection ability is close to the result of direct
signal detection of bearing housing. Compared with PSO-MED
and MCKD, the proposed method has obvious advantages in the
detection of casing signals.

6. Discussions

MED is a classical method in blind deconvolution, but it is
essentially a finite impulse response (FIR) filter, so it is necessary
to determine its filter length before using it. From the simulation
signal and test signals, even if the value of filter length is only
1 different, it will produce completely different outputs. It can
be seen that the filter lengths have a great effect on the MED

filter results. Although some researches [7–14] are devoted to
Fig. 37. The output of the outer race fault casing signal processed by MCKD. (a) Time domain waveform; (b) Envelope spectrum of (a).
Fig. 38. The output of the inner race fault casing signal processed by MCKD. (a) Time domain waveform; (b) Envelope spectrum of (a).
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Fig. 39. The output of the ball fault casing signal processed by MCKD. (a) Time domain waveform; (b) Envelope spectrum of (a).
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Fig. 40. The cfe index of three failure modes of fault signals under different
cases.

improving the MED and have achieved significant results, these
methods also need to set the filter length in advance. Therefore,
we believe that the selection of filter length should not be ig-
nored. The core idea of this paper is to establish an index Lµ

hat can measure the impact characteristics of periodic fault to
valuate the MED-filtered output signal and avoid the single pulse
s much as possible. And this impulse measurement idea is also
eflected in the literature [31]. The results of 533 record in the
un-to-failure test show that choosing filter length by experience
s likely to cause misdiagnosis and yet the proposed method can
ccurately extract the early bearing fault features. The results of
he casing signals show that the interference of the transmission
ath can be eliminated at the optimal filter length.
PSO-MED aims at the filter coefficients and searches for a set

f filter coefficients that can make the signal kurtosis maximum
n a certain dimension. However, the filter coefficients are a set
f sequences generated by random particles, from which PSO-

ED only selects an ‘‘optimal solution’’. It lacks the iterative r
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update of filter coefficients themselves (Eq. (6)), which makes it
underperform in weak casing fault signals. MCKD changed the
kurtosis objective function of MED. It is better than PSO-MED
in the diagnosis results of the casing signal, but it performed
badly in the harmonic identification of 533 record. Besides, MCKD
relies heavily on the prior fault period T. If changing the T of the
outer race fault casing signal to 114, the result will be worse as
shown in Fig. 41(a). The filter length in MCKD is not primary,
because in the case of a given T, the larger the filter length is,
the better the period T of output is, even if T is not a bearing
fault period. Fig. 41(b) depicts the result of the outer race fault
casing signal when T is 200 (51.2 Hz) and the filter length is 1000.
The result shows that the spectrum has completely become the
harmonics of the T (51.2 Hz) period, which indicates that using
MCKD may cause misdiagnosis if there is no fault period impulse
in the signal. In addition, too large a filter length will make MCKD
lose the significance of objective diagnosis.

In Refs. [13,16], an empirical formula Eq. (15) is given to deter-
mine the filter length range, where fc is the resonance frequency
of fault excitation. fs is the sampling frequency of the raw signal.
Take the inner race fault casing as an example. As shown in
Fig. 42, the resonance peaks fc is about 1195 Hz (1195–1060 =

135 Hz or 1331–1195 = 136 Hz), fs = 10.24 kHz. The filter length
determined by Eq. (15) is L > 9. Obviously, the results of this
range cannot meet the requirement of precise optimal filtering.

L >
2fs
fc

(15)

. Conclusions

This paper presents a method for selecting the optimal filter
ength of MED which is beneficial to improve the accuracy of
ED in the processing of weak impact signals. By combining the
utocorrelation function, an energy index is proposed. The index
s used as the objective function and substituted into the genetic
lgorithm to optimize the filter length globally in order to avoid
he case that the periodic impulses are enhanced into a single
andom large pulse at the inappropriate filter length. And two
Fig. 41. The results of outer race fault casing signal at different prior period T. (a) T = 114; (b) T = 200.
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Fig. 42. The spectrum of the inner race fault casing signal.

different bearing fault experiments verify the effectiveness of the
proposed method. The advantages of the proposed method can
be summarized as follows:

(1) The results of the run-to-failure bearing test show that the
filter length selected by experience is easy to produce a wrong
result in the diagnosis process and the method proposed in this
paper can avoid this problem.

(2) The fault casing signal that far away from the bearing
vibration source indicate that the transmission path seriously
weakens the fault characteristics. The proposed method can elim-
inate the effect of the transmission path and enhance the weak
periodic impulses.

(3) The comparisons with PSO-MED and MCKD indicate that
the proposed method has better performance in detecting the
weak fault casing signal.
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