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flaw detection method was proposed that was based on ensemble empirical mode decomposition (EEMD)
singular entropy and least square support vector machine (LSSVM). First, turnout vibration signals with
non-stationary characteristics were adaptively decomposed into a certain number of intrinsic mode functions
(IMFs) using EEMD. Each IMF contained different feature scales of the original signal. Then, with cor-
relation analysis, a certain number of IMFs that had the largest correlation coefficients with the original
signal were sifted out. The singular entropy of these IMFs were computed and used as the feature vectors.
Last, in order to classify the working state and flaw type of the turnout, the feature vectors fused with
multi-point singular entropies were input into the LSSVM to train and test. The vibration signals on the
turnout platform and contrast experiment were analyzed, and the results showed that this method can be
effectively applied to turnout flaw detection. In addition, the proposed method was immune to noise and

had stable performance when the signal-to-noise ratio was higher than 20 dB.

Keywords flaw detection; high-speed turnout; vibration signal; ensemble empirical mode decomposition;

singular entropy; least square support vector machine

Damage Detection and Localization Using Nonlinear Ultrasonic Modulation Method

Qu Wenzhong , Li Zheng, Wang Zhi, Xiao Li
(Department of Engineering Mechanics, Wuhan University Wuhan, 430072, China)

Abstract Among structural health monitoring techniques, the nonlinear ultrasonic spectroscopy method is
an effective diagnostic approach to detect nonlinear damage, such as fatigue cracking, due to its sensitivity
to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to
detect and locate a fatigue crack on an aluminum plate. As opposed to the nonlinear wave modulation
method, which recognizes the modulation of low-frequency vibrations and high-frequency ultrasonic waves,
the proposed method recognizes the modulation of tone bursts and high-frequency ultrasonic waves. In the
experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation
were simultaneously imposed on the piezoelectric array that was bonded to the surface of an aluminum
plate. The data was processed with short-time Fourier transform. Both the tone burst modulation and the
continuous sinusoidal excitation were observed in different actuator-sensor paths, indicating the presence
and location of the fatigue crack. These results showed that the proposed method was capable of success-

fully detecting and locating the fatigue crack.

Keywords structural health monitoring; fatigue crack; nonlinear ultrasonic modulation; short time Fou-

rier transform (STFT); piezoelectric (PZT) array

Characteristics of Aero-engine Asynchronous Response

with Support Looseness Fault

Wang Haifei's Chen Guo's Liao Zhongkun®, Zhang Zhang®, Shao Fuyong?’
(1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics Nanjing, 210016, China)
(2. Beijing Power Machinery Research Inst. , Aerodynamic Technology Academy of China Aerospace Science
and Industry Corporation Beijing, 100074, China)

Abstract This paper examines the mechanism of asynchronous response characteristics caused by loose-

ness faults in aero-engine support systems. First, a single-degree-of-freedom rotor model without mass
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was established, and a looseness fault model was introduced. The response of the system was obtained by
the numerical integration method, and the asynchronous response characteristics were analyzed. Second,
an entire engine rotor-bearing-casing model was established, and a looseness fault model was introduced.
The coupled system response was solved with the numerical integration method, and its asynchronous re-
sponse characteristics were analyzed. The results showed the reasons that support looseness faults in aero-
engines caused frequency division and frequency multiplication: When the changing period of stiffness was
equal to that of the rotation speed, frequency multiplication appeared, and the corresponding frequencies of
critical speeds were excited at certain speeds. Moreover, when the changing period of stiffness was integer
times that of the rotation speed, 1/n times frequency division and frequency multiplication appeared, and

the corresponding frequencies of critical speeds were excited at certain speeds.

Keywords asynchronous response characteristics; dynamic modeling; looseness fault; whole vibration;

looseness mechanism

Shaking Table Model Test on Critical Failure Characteristics of
Subway Station Structure

Zuo Xi''*, Chen Guoxing®, Wang Zhihua®, Zhuo Enquan®
(1. Institute of Architectural Engineering, Jinling Institute of Technology Nanjing, 211169, China)
(2. Institute of Geotechnical Engineering, Nanjing University of Technology Nanjing, 210009, China)

Abstract A three-span, three-story model of the Nanjing subway station was designed and manufactured,
using galvanized steel wire and microconcrete to simulate the rebar and prototype concrete, respectively.
At the same time, a large-scale shaking table test on critical failure characteristics of the subway station
structure under liquefaction effect was conducted, using saturated sand with overlying clay as model field
soil to serve as a seismic liquefaction site. The acceleration and excess pore pressure of the model soil, as
well as the acceleration, strain, horizontal displacement, and lateral pressure of the model structure were
measured and analyzed. The results showed that under the main shock action of a Shifang wave with PGA
of 0. 8¢, the liquefaction effect lasted for a long time, and the upper soil layer of pore pressure dissipated
slowly. The liquefaction potential of the model site was defined based on D' Alembert's principle and com-
pared with the distribution of the pore pressure ratio. This proved both the inhibition effect of the soil lig-
uefaction around the underground structure and the promotion effect of soil liquefaction a certain distance
away from the structure. The most severely damaged parts were the interior columns of the underground

structure, and the interior columns on the bottom layer had reached the critical failure state.

Keywords shaking table test; liquefaction; subway station structure; critical failure characteristics

Influence Mechanism and Experimentation of Crankshaft
Bending Vibration in Torsional Vibration Measurement

Wang Yuanwen', Dong Dawei', Sun Meiyun®, Yan Bing', Wang Jingxin®
(1. School of Mechanical Engineering, Southwest Jiaotong University ~ Chengdu, 610031, China)
(2. China Northern Locomotive Rolling Stock Industry Tangshan Railway Vehicle Co. Lt Tangshan, 063035, China)
(3. First Automobile Work Shop-Volkswagen Automobile Co. Changchun, 130011, China)

Abstract In this paper, an experimental study determined the coupled bending vibration of an internal



