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a b s t r a c t

In this study, a new rotor–ball-bearing–casing coupling dynamic model for a practical aero-
engine is established. In the coupling system, the rotor and casing systems are modelled using
the finite element method, support systems are modelled as lumped parameter models,
nonlinear factors of ball bearings and faults are included, and four types of supports and

the aero-engine. A new numerical integral method that combines the Newmark-β method and
the improved Newmark-βmethod (Zhai method) is used to obtain the system responses. Finally,
the new model is verified in three ways: (1) modal experiment based on rotor–ball bearing rig,
(2) modal experiment based on rotor–ball-bearing–casing rig, and (3) fault simulations for a
certain type of missile turbofan aero-engine vibration. The results show that the proposed
model can not only simulate the natural vibration characteristics of the whole aero-engine but
also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In general, aero-engine rotors are supported on stator casings through ball bearings, and the casings are supported on a
base. To reduce rotor vibrations and adjust the critical speeds of the system, flexible supports are usually designed between
the outer race and the housing of the bearings. The motions of the rotors, bearings, and casings are affected by each other.
Consequently, the rotor–support–casing coupling system is investigated from the viewpoint of structure and dynamics [1].

Thus far, many studies have investigated the vibration characteristics of an aero-engine. Ou [2] analysed the whole aero-engine
vibration characteristics of the rotor–support–casing system by combining a modal synthesis method and a finite element method. Chen
[3] studied the dynamics characteristics of the whole aero-engine using NASTRAN software and found a coupling vibration between the
rotor's higher-order bending vibrationmodes and casing vibration; finally, methods for determining the rotor system's critical speedswere
studied by considering the casing vibration. Hong [4] computed the dynamics characteristics of a certain type of engine using the static
stiffness, dynamic stiffness, and awhole aero-engine finite element model; they indicated that awhole aero-engine model can be used to
analyse the effect of the support dynamic stiffness and local casing vibration on the whole aero-engine. Chiang [5] studied the vibration
characteristics of a single/dual rotor–ball bearing system using the finite element method. Sun [6] proposed a flexible dual-rotor finite
element model based on a detailed nonlinear characteristics consideration for ball bearings and the squeeze film damper and stimulated
the transient responses of the blade loss. Sun [7] proposed a dual-rotor gas turbine engine finite element model and used a numerical
integrationmethod to calculate the sudden unbalance response under blade loss; in doing so, they considered the contact nonlinearity of a
ball bearing, nonlinearity of the squeeze film force, and thermal increase effect of bearing components during blade loss. Hai and Bonello
[8] established a dual rotor-rolling bearing systemwith a nonlinear squeeze film damper; they conducted nonlinear numerical simulations
by combining NASTRAN finite element software with MATLAB and showed that the computing speed was greatly improved.
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In a rotor–support–casing coupling system, there are many nonlinear factors such as the clearance, nonlinear contact force,
varying compliance (VC) vibration of ball bearing, and nonlinear oil-film force of squeeze film damper (SFD). In particular,
when rotor and bearing faults such as rubbing, looseness, misalignment, and bearing damage occur, the rotor–support–casing
coupling system shows stronger nonlinear characteristics. However, nonlinear dynamic problems are very difficult to solve
using the traditional transfer matrix method, modal synthesis method, finite element method, and impedance coupling
method. Chen [9] proposed a new rotor–ball-bearing-casing coupling dynamic model in which the nonlinear factors of the
bearing, SFD, and rubbing fault are considered, and the rotor is considered a free Euler beammodel with an equal section. The
numerical integral method is used to obtain the system's responses, and the whole aero-engine vibrations and characteristics
of rub-impact are analysed; however, it is difficult to analyse a rotor with a variable cross section using this method.

Therefore, the modern aero-engine structure is very complex, and it is very difficult to establish a detailed whole aero-
engine finite element model because a computer can barely handle the large computational load required for the same. In
addition, it is very difficult to solve complex nonlinear responses. In this light, to solve the whole aero-engine vibration, a
new rotor–support–casing nonlinear coupling dynamic model is proposed in this study. In the proposed model, the rotor
and casing systems are modelled using the finite element method; support systems are modelled by lumped parameter
models; nonlinear factors of ball bearings and all types of faults are included; and four types of supports and connection
modes are defined to model the complex rotor–support–casing coupling system. A new numerical integral method that
combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system
responses. Finally, the new model is verified in three ways.

2. Aero-engine rotor–support–casing coupling dynamic model

The aero-engine rotor–support–casing coupling dynamic model consists of the rotors, supports, and casings. The finite
element method is used to establish the model of the rotors and casings, and the discrete lumped mass model is used to
model all types of supports. The coupling between parts is enabled by the action and the reaction forces. Finally, the
numerical integral method is used to solve the differential equation of motion. The rotors, casings, and supports
(connections) in the coupling system are modelled as follows.

2.1. Rotor model

The rotor consists of a number of rigid rotating discs and an elastic shaft. The former is modelled as a discrete lumped
mass, and its mass, inertia, and gyroscopic moments are considered. The latter is discretised using a beam element model,
and its shear deformations, gyroscopic moments, and inertia are considered. All parts are coupled by nonlinear forces and
moments. Fig. 1 shows the finite element rotor dynamic model.

For each rotor shaft beam element, E, I, G, μ, L, ρ, and A respectively denote the elastic modulus, moment of inertia, shear
modulus, Poisson's ratio, shaft length, shaft density, and shaft cross-sectional area. Pi is the rigid rotating disc; Fxi, Fyi, Mxi,
and Myi are forces and moments that act on the ith node of the rotor in the X and Y directions. Fig. 3 shows the O-XYZ fixed
coordinate system. Under a deformation state, any cross section's position relative to the fixed coordinate system is
determined as follows: elastic shaft centerline position is determined by the displacement x in the X direction and the
displacement y in the Y direction, cross-sectional orientation ϕ is determined by the angle around the X axis and the angle ψ
around the Y axis, and the cross section also rotates around the Z axis.
(1)
 Motion equations of rigid disc element
Suppose the rigid disc's mass ismd, rotor cross-equator inertia is Jdd, cross-polar inertia is Jdp, and ω is the rotating speed of
the disc. Through the Lagrange equation, we can obtain the motion equations of the rigid disc relative to the fixed
coordinate system.

ðMd
T þMd

RÞ €qd�ωGd _qd ¼Q d (1)

where Q d is the generalised external force vector; Md
T and Md

R are respectively the mass matrix and mass inertia matrix;
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Fig. 1. Finite element rotor dynamic model.
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Gd is the gyroscopic matrix; and q is the generalised displacement vector, where q¼ ½x; y;ϕ;ψ �.Then,

Md
T ¼

md 0 0 0
0 md 0 0
0 0 0 0
0 0 0 0

2
6664

3
7775; Md

R ¼

0 0 0 0
0 0 0 0
0 0 Jdd 0

0 0 0 Jdd

2
66664

3
77775; Gd ¼

0 0 0 0
0 0 0 0
0 0 0 � Jdp

0 0 Jdp 0

2
666664

3
777775
(2)
 Motion equations of beam element
In this study, beam elements are adopted. Each beam element has two nodes and eight DOFs. Each node has four DOFs,
which are respectively the displacements x and y in the X and Y directions, and rotating angles ϕ and ψ around the X and
Y axes. The cross section's displacement of the element is a function of the time and position along the element axis. The

generalised displacement vector of the element is qeðtÞ ¼ qe1 qe2 qe3 qe4 qe5 qe6 qe7 qe8
h iT

. Through the Lagrange

equation, the motion equations of the beam element relative to the fixed coordinate system can be obtained.
ðMe
T þMe

RÞ €qeþð�ωGeÞ _qeþðKe
B�Ke

AÞqe ¼Q e (2)

where Q e is the generalised external force vector;Me
T andMe

R are respectively the mass matrix and mass inertia matrix; Ge is
the gyroscopic matrix; Κe

B is the element's bending and shear stiffness matrix; and Κe
A is the element's tensile stiffness

matrix. These matrixes have been described in literature [1,10].
The rotor system's motion equation through the element's motion equations can be obtained as follows:

ðMsÞ €qsþðCs�ωGsÞ _qsþKsqs ¼Q s (3)

where Q s is the generalised external force vector; Ms, the mass matrix; Gs, the gyroscopic matrix; Κs, the system's stiffness
matrix; and Cs, the system's damping matrix.

In this study, Cs is assumed to be the proportional damping matrix, that is, Cs ¼ α0M
sþα1Κs, where α0 and α1 are

constants. The ith order damping ratio is

ξi ¼
1
2

α0
ωi

þα1ωi

� �
(4)

Obviously, after any two natural frequencies and damping ratios of the rotor are obtained through a modal experiment,
α0 and α1 can be solved through Eq. (4), and the system's damping ratio matrix Cs can be obtained.

2.2. Casing model

In general, the casing finite element model can be constructed by the beam element, conical shell element, and surface shell
element. The casing is a shell structure, and its vibration mode has many forms whose circumferential wave number is 0, 1, 2, …,
and so on. However, when the casing couples with the rotor, only the mode of wave number 1 appears, and the cross section of
the rotor does not deform. Therefore, the casing can be constructed using a common beam element that does not rotate [1].

In this study, the casing is modelled as a beam that does not rotate, as in rotor modelling. By a finite element modelling
method, the differential equation of motion of the casing is

ðMcÞ €qcþCc _qcþKcqc ¼Q c (5)

where Q c is the generalised excitation force vector; Mc, the mass matrix of the casing; Κc, the stiffness matrix of the casing;
Cc, the damper matrix of the casing; and Cs, the proportional damping matrix.

2.3. Discrete support model

To model a practical complex aero-engine with multiple rotors and casings, the connection relationship among the rotor,
casing, and support needs to be considered in detail. Therefore, in this study, four types of connection forms are defined:
support connection between rotor and casing, shaft coupling connection between rotor and rotor, elastic connection
between casing and casing, and installation connection between casing and base. By synthetically using these four types of
connections, the whole aero-engine with multiple rotors and casings can be modelled very conveniently.
(1)
 Support connection between rotor and casing
Each support connection between the rotor and the casing RCi (i¼1, 2, …, N), includes a ball bearing and bearing housing.
Suppose that mwi is the outer mass of the bearing; mbi is the mass of the bearing housing; kti is the support stiffness between
the outer race and the bearing house; cti is the damping coefficient between the outer race and the bearing housing; kfi and cfi
are respectively the support stiffness and damping coefficient between the casing and the bearing housing. As shown in Fig. 2,
FyRi and FxRi are the rotor force acting on the support RCi, and FyCi and FxCi are the casing force acting on the support RCi. It is
assumed that the support RCi is connected with the mth node of the rotor and the nth node of the casing.



Fig. 2. Rotor–casing support.
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Generally, in aero-engine design, an elastic support with stiffness kti is installed between the bearing outer ring and the bearing
house. The stiffness of the elastic support can be computed according to its structure type or be measured experimentally. kfi is
the stiffness between the bearing house and the casing, and it can be simplified as a cylindrical model with one end fixed and
the other end free according to the connection characteristics; the stiffness can be computed by the finite element method.
In this study, the bearing outer ring is supposed to be connected to the bearing housing and does not rotate; the inner ring is
fixed on the rotating shaft. Assume that the displacements of the mth node of the rotor are xRm and yRm. Let
x¼ xRm�xwi; y¼ yRm�ywi. According to the literature [11,12], the ball force can be expressed as

FxRi ¼
XN
j ¼ 1

Cbðx cos θjþy sin θj�r0Þ3=2Hðx cos θjþy sin θj�r0Þ cos θj

FyRi ¼
XN
j ¼ 1

Cbðx cos θjþy sin θj�r0Þ3=2Hðx cos θjþy sin θj�r0Þ sin θj

8>>>>>><
>>>>>>:

(6)

In this equation, Cb is the Hertzian contact stiffness, and it can be obtained from the nonlinear Hertzian contact elastic analysis
of the inner race, outer race, and balls. Hð�Þ is the Heaviside function; when the function's independent variable is greater than
0, the function value is 1; otherwise, it is 0. θj is the jth ball's angle position, that is, θj ¼ωCage � tþ 2π

Nb
ðj�1Þ; j¼ 1;2;⋯Nb,

where Nb is the number of balls. ωCage is the rotating speed of the cage. Suppose that the outer race radius is R, inner ring radius
is r, ωCage ¼ ω�r

Rþ r, and ω is the shaft rotating angular velocity.
Therefore, the bearing outer race's differential equation of motion is

mwi €xwiþktiðxwi�xbiÞþFdxi ¼ FxRi
mwi €ywiþktiðywi�ybiÞþFdyi ¼ FyRi�mwig

(
i¼ 1;2;⋯N (7)

here Fdxi and Fdyi are damping forces. If the viscous damping is considered, then

Fdxi ¼ ctið_xwi� _xbiÞ; Fdyi ¼ ctið_ywi� _ybiÞ (8)

Otherwise, the damping forces would be nonlinear, such as the damping forces arising from the SFDs and other nonlinear
dampers.
(2)
 Coupling connection between rotor and rotor
Assume that the coupling connect RRCk (k¼1, 2, …, N) connects the ith node of the left rotor and the jth node of the
right rotor. The radial stiffness of coupling is kRr, angular stiffness is kRα, radial damping is cRr, and angular damping is cRα.
The generalised displacements of the ith node of the left rotor are xRLi; yRLi; ϕRLi; ψRLi; velocities are _xRLi; _yRLi; _ϕRLi; _ψRLi;
jth node displacements of the right rotor are xRRj; yRRj; ϕRRj; ψRRj; and velocities are _xRRj; _yRRj; _ϕRRj; _ψRRj. Then, the forces
and moments that act on the ith node of the left rotor, FRxi, FRyi, MRxi, and MRyi, and the forces and moments for the jth
node of the right rotor, FRxj, FRyj, MRxj, and MRyj are

FRxi ¼ kRrðxRRj�xRLiÞþcRrð_xRRj� _xRLiÞ
FRyi ¼ kRrðyRRj�yRLiÞþcRrð_yRRj� _yRLiÞ
MRxi ¼ kRαðϕRRj�ϕRLiÞþcRαð _ϕRRj� _ϕRLiÞ
MRyi ¼ kRαðψRRj�ψRLiÞþcRαð _ψRRj� _ψRLiÞ

8>>>><
>>>>:

FRxj ¼ �FRxi
FRyj ¼ �FRyi
MRxj ¼ �MRxi

MRyj ¼ �MRyi

8>>>><
>>>>:

(9)

In general, the types of coupling include gear coupling, diaphragm coupling, and flange bolt coupling. The coupling's
radial stiffness kRr and angular stiffness kRα can be computed according to its type and structure, and they can also be
measured experimentally.
(3)
 Elastic connection between casing and casing
The elastic connection between the casing and the casing CCk (k¼1, 2, …, N) connects the ith node of casing 1 and jth
node of casing 2. The radial stiffness, angular stiffness, radial damping, and angular damping are respectively kCr, kCα, cCr,
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and cCα. The generalised displacements of the ith node of casing 1 are xC1i; yC1i; ϕC1i; ψC1i; velocities are
_xC1i; _yC1i; _ϕC1i; _ψC1i; generalised displacements of the jth node of casing 2 are xC2j; yC2j; ϕC2j; ψC2j; and velocities are
_xC2j; _yC2j; _ϕC2j; _ψC2j. The forces and moments acting on the ith node of casing 1 are Fxi, Fyi, Mxi, and Myi, and the forces
and moments acting on the jth node of casing 2 are Fxj, Fyj, Mxj, and Myj. They are given as

FC1xi ¼ kCrðxC2j�xC1iÞþcCrð_xC2j� _xC1iÞ
FC1yi ¼ kCrðyC2j�yC1iÞþcCrð_yC2j� _yC1iÞ
MC1xi ¼ kCαðϕC2j�ϕC1iÞþcCαð _ϕC2j� _ϕC1iÞ
MC1yi ¼ kCαðψC2j�ψC1iÞþcCαð _ψC2j� _ψC1iÞ

8>>>><
>>>>:

FC2xj ¼ �FC1xi
FC2yj ¼ �FC1yi
MC2xj ¼ �MC1xi

MC2yj ¼ �MC1yi

8>>>><
>>>>:

(10)

Usually, the casings are connected to each other by bolts, and the bolts' connection stiffness kCr and kCα can be computed
using the finite element method and measured experimentally.
(4)
 Elastic support (installation node) between casing and base
The elastic connection between the casing and the base CBk (k¼1, 2, …, N) connects the ith node of the casing and the
base. The support stiffness is kC, and damping is cC. The displacements of the ith node of the casing are xCi; yCi, and the
velocities are _xCi; _yCi. Then, the forces acting on the ith node of the casing FCxi and FCyi are

FCxi ¼ �kCxCi�cC _xCi
FCyi ¼ �kCyCi�cC _yCi

(
(11)

Here, the support stiffness kC between the casing and the base can be computed using the finite element method or
measured experimentally.
2.4. Solution of finite element rotor–support–casing coupling dynamic model

Because the number of DOFs in the finite element rotor–support–casing coupling dynamic model is very large and there
are many strong nonlinear factors, in this study, a combination time integration approach is used to solve the system's
responses, which combines the implicit Newmark-β method and the improved explicit Newmark-β method (Zhai method
[13]). This finite element rotor–support coupling dynamic solution procedure is shown in Fig. 3.

The merits of the combination method are as follows: (1) the Newmark-β method is used to solve the rotor and casing
finite element model and the Zhai method is used to solve the lumped parameter support models, making the combination
method very suitable for solving a coupling system; and (2) an enormous matrix need not be formed and the matrixes of the
rotors and the casings need not be combined into a large matrix, thus improving the computational efficiency greatly.
3. Model verification based on rotor tester

3.1. Verification based on rotor–ball-bearing tester

A rotor–ball-bearing fault tester (Shenyang Aero-engine Institute) can effectively simulate common faults in aero-engine
rotors and ball bearings. The tester and dynamic model are shown in Fig. 4.

The rotor–ball-bearing fault tester includes a rotating shaft, a rotating disc, a flanged disc, two supports, a motor, and a
gear-box. In the dynamic model, P1 and P2 are discs. P1 is the rotor disc, and P2 is the flanged disc connected with the gear
output shaft. S1 and S2 are two supports. L1, L2, L3, and L4 decide each parts' position at the shaft. All model parameters need
to be modified by experimental verification, and the experimental and simulation results ultimately show good consistency.
Explicit integration (Zhai 
method)

Finite element 
casing model

Implicit integration 
(Newmark- )

Responses of
casings

Responses of 
rotors and casings

Finite element rotor 
model

Implicit integration 
(Newmark- )

Responses of
rotors

Forces 
acting on 
casings

Forces
acting on 
rotors

β β

Fig. 3. Solving flow for rotor–support–casing coupling dynamics.
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Fig. 4. Rotor–ball-bearing tester and its dynamic model: (a) rotor–ball-bearing tester and (b) structure sketch map of tester.

Table 1
Rotor parameters of rotor–ball-bearing test rig.

Elastic modulus E (Pa) Axis diameter D (m) Density ρ (kg/m3) Poisson’s
ratio μ

Proportion damping
ratio α0

Proportion damping
ratio α1

2.1�1011 0.019 7.8�103 0.3 5 1.35�10�5

L1 (mm) L2
(mm)

L3
(mm)

Disc P1
mass mp

(kg)

Disc P1 polar moment
of inertia Jdp1 (kg m2)

Disc P1 equatorial
moment of inertia Jdd1
(kg m2)

Disc P2
mass mp2

(kg)

Disc P2 polar moment
of inertia Jdp2 (kg m2)

Disc P2 equatorial
moment of inertia Jdd2
(kg m2)

100 342 370 2.4 0.0125 0.00625 0.45 0.00025 0.000125

Table 2
Parameters of ball bearings.

Pitch
diameter Dm

(mm)

Ball diameter
d (mm)

Outer raceway
radius R (mm)

Inner raceway
radius r (mm)

Ball
number
Nb

Contact stiffness
Cb (N/m3/2)

Bearing
clearance r0
(μm)

Outer mass
mw (kg)

Bearing carrier
mass mw (kg)

36 9.6 22.8 13.2 7 11.67�109 0 0.08 76

Table 3
Parameters of supports.

kt (N/m) ct (N s/m) kf (N/m) cf (N s/m)

1.0�108 500 3.0�107 2000
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In this study, the modal analysis of the tester is performed by the hammer hitting method in the support state. The main
equipment used includes an NI9234 dynamic signal acquisition module (NI Corporation), a 30927-type hammer (ENDEVCO
Corporation), and a 4805-type ICP acceleration sensor (B&K Company). The experiment considers a single measuring point
and many exciting points. The rotor–support coupling dynamic model is established, and by adjusting the parameters of the
simulation model, the modal parameters of the simulation model and experimental model ultimately show good
consistency. The final model dynamics parameters are obtained. The rotor parameters are listed in Table 1; the ball bearing
parameters, in Table 2; and the support parameters, in Table 3.

Fig. 5 shows the amplitudes and phases of the original point frequency response functions (FRFs) obtained by calculation
and experimental modal analysis. Table 4 shows a comparison between the calculated and the experimental modal
parameters. Fig. 6 shows a comparison of the modes for the first four modal shapes. In the comparison of mode shapes,
because the shaft is only hit from S1 to S2 in the experimental modal analysis, the mode shapes of the experimental mode
include only the part between the dotted lines; however, in the calculation of the modal analysis, the vibration mode can be
calculated from the far left to the far right of the shaft. Therefore, the vibration mode shape includes all parts inside and
outside the dotted line in Fig. 6.

From Figs. 5 and 6, and Table 4, it can be concluded that the simulation results agree well with the experimental values.
This proves that the proposed finite element rotor–support coupling system dynamics model is effective.
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Table 4
Modal parameters from calculation and experiment.

Order Experimental results Simulation results

Natural frequency (Hz) Damping ratio Natural Frequency (Hz) Damping ratio

1st 35.75 0.0116 37.81 0.0327
2nd 146.38 0.0173 148.86 0.0164
3rd 260.20 0.0133 255.80 0.0178
4th 485.79 0.0078 488.12 0.0326

 

 

Fig. 6. Contrast between calculated and experimental modal shapes for first four orders: (a) 1st order; (b) 2nd order; (c) 3rd order; and (d) 4th order.
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Fig. 7. Aero-engine rotor tester: (a) aero-engine rotor tester and (b) section drawing of aero-engine rotor tester. 1 – rubbing ring, 2 – ball bearing, 3 –

turbine disc, 4 – bolt for deforming rubbing ring, 5 – compressor disc, 6 – ball bearing, 7 – shaft.
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3.2. Verification based on rotor–ball-bearing–casing tester

3.2.1. Rotor–ball-bearing–casing tester
To simulate the rotor vibration of a real aero-engine, an aero-engine rotor tester [11] is designed and manufactured

(Shenyang Aero-engine Institute). Fig. 7(a) and (b) shows its full-scale photograph and its section drawing, respectively.
The structure sketch map of the aero-engine rotor tester is shown in Fig. 8. The rotor comprises three discs, where P1

denotes the flange plate; P2, the compressor disc; and P3, the turbine disc. The casing includes seven segments, namely, AB,
BC, CD, DE, EF, FG, and GH. The casings are connected by bolts. The rotor is supported by two supports, RC1 and RC2. The
basic sizes are labelled in Fig. 8, and other parameters are listed in Tables 5–9. The finite unit number of rotors is 34, and the
finite unit number of casings is 29.
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Fig. 8. Structure sketch map of aero-engine rotor tester (unit: mm): (a) rotor model (b) casing model.

Table 5
Main rotor parameters.

Parameters Disc P1 Disc P2 Disc P3

Mass mp (kg) 0.5 10 10
Cross-polar inertia Jdp (kg m2) 0.005 0.05 0.05
Cross-equator inertia Jdd (kg m2) 0.0025 0.025 0.025
Elastic modulus E (Pa) 2.1�1011 2.1�1011 2.1�1011

Poisson's ratio μ 0.3 0.3 0.3
Density ρ (kg/m3) 7.8�103 7.8�103 7.8�103

Proportion damping ratio α0 5 5 5
Proportion damping ratio α1 1.35�10�5 1.35�10�5 1.35�10�5

Table 6
Main parameters of casings.

Wall thickness (mm)

AB BC CD DE EF FG GH

2 10 2 2 2 10 2

Elastic modulus E (Pa) Density ρ (kg/m3) Poisson's ratio μ Proportion damping ratio α0 Proportion damping ratio α1
2.1�1011 7.8�103 0.3 5 1.35�10�5

Table 7
Main parameters of ball bearing.

Pitch
diameter Dm

(mm)

Ball diameter
d (mm)

Outer raceway
radius R (mm)

Inner raceway
radius r (mm)

Ball
number
Nb

Contact stiffness
Cb (N/m3/2)

Bearing
clearance r0
(μm)

Outer mass
mw (kg)

Bearing carrier
mass mw (kg)

36 9.6 22.8 13.2 7 11.67�109 0 0.08 10

Table 8
Support parameters of rotor–casing.

Supports Node of rotor Casing (node) kt (N/m) ct (N s/m) kf (N/m) cf (N s/m)

RC1 11 6 6.0�106 1000 7.0�106 1000
RC2 29 27 6.0�106 1000 6.0�106 1000

Table 9
Connection parameters of casing-base.

Connection Casing (node) kcx (N/m) kcy (N m) ccx (N s/m) ccy (N s/m)

CB1 6 7.5�106 5.0�107 2000 0
CB2 26 7.5�106 5.0�107 2000 0
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3.2.2. Modal experiment verification
In this study, modal experiments of the rig under the support state are conducted, and the frequency response functions

are obtained by the slow sine scanning method. The main equipment used for this purpose include an NI9234 dynamic
signal acquisition module (NI Corporation), a 4805-type ICP acceleration sensor (B&K Company), and a HEV-50A-type
vibration exciter (Vibration Engineering Institute, Nanjing University of Aeronautics and Astronautics).

The modal experiment sketch map is shown in Fig. 9, and photographs of the experiment are shown in Figs. 10–12. Seven
acceleration test points are installed on the rotor and casings; test points 2 and 6 are installed on the casings, and the other
test points are installed on the rotor. Test point 1 is an excitation point as well, which is connected with the exciter, and a
force sensor is installed between the exciter and the excitation point to measure the excitation force. The excitation force
and response signals are collected by a computer, and the frequency response functions, which include H11ðf Þ, H21ðf Þ, H31ðf Þ,
H41ðf Þ, H51ðf Þ, H61ðf Þ, and H71ðf Þ, can be obtained through signal processing and analysis.

In Fig. 13, the experiment and simulation amplitude frequency response functions H11ðf Þ, H31ðf Þ, H51ðf Þ, and H71ðf Þ are
compared. Here, the sine slow scanning method is used as the modal analysis method in the simulation and experiment. The
first three orders of experimental modal shapes are shown in Fig. 14, and the first three orders of computation modal shapes
are shown in Fig. 15. In Figs. 14 and 15, the first and second order shapes are rigid shapes, indicating that the rotor does not
deform; the third shape is z bent shape. From Figs. 14 and 15, the simulation results agree well with the experimental values,
proving that the proposed finite element rotor–support–casing coupling system dynamics model is correct and effective.
1(Excitation)7 36 5 4 2

Exciter

Force 
sensor

Fig. 9. Modal experiment sketch map.

2 13, 4, 5 (inner)

Exciter
Force sensor

Fig. 10. Test points' positions 1.
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Fig. 11. Test points' positions 2.
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Fig. 12. Test points' positions 3.
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Fig. 13. Amplitude-frequency response function plots' contrast: (a) the test point 1; (b) the test point 3; (c) the test point 5; and (d) the test point 7.

Fig. 14. First three orders' modal shapes in experiment results: (a) first order (43.4 Hz); (b) second order (46.5 Hz); and (c) third order (113.0 Hz).
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4. Vibration fault simulation of certain types of missile turbofan engines

4.1. Aero-engine model and whole aero-engine vibration fault

Fig. 16 shows a structure sketch map of the rotor–ball-bearing–casing model for certain types of missile turbofan aero-
engines, where P1 denotes the fan disk; P2, the motor disk; P3, the compressor disk; P4, the turbine disk; C1, the intermediate



Fig. 15. First three orders' modal shapes in simulation results: (a) first order (44.5 Hz); (b) second order (48.4 Hz); and (c) third order (111.9 Hz).
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Fig. 16. Sketch map of certain types of missile turbofan aero-engines.
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Fig. 18. Horizontal acceleration signal at speed of 33,093 rpm: (a) waveform and (b) spectrum.
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casing; C2, the combustor casing; G1, the gear coupling between the fan shaft and the transmission shaft; G2, the gear
coupling between the transmission shaft and the compressor shaft; G3, the gear coupling between the compressor shaft and
the turbine shaft; S1, the fan support point bearings; S2, the compressor front support bearings; S3, the compressor rear
support bearings; and S4, the turbine support bearings.

The aero-engine's radial vibrations are measured by two acceleration sensors, one of which is installed on the aero-engine's
lateral horizontal position and the other, on the aero-engine's top vertical position. The sampling frequency is 12.8 kHz.

During the trial running process, the whole aero-engine vibration value often exceeds the standard limit. The 3D
waterfall plots of certain trial running data obtained from the No. Z09077 aero-engine are shown in Fig. 17. Fig. 17 shows
that the vibration appears abnormal at high speeds and that there are many multiple-frequency components. The
experimental data at a speed of 33,093 rpm is selected for analysis. The waveforms and spectrums of the horizontal and
vertical signals, which are denoised by the auto-correlation method, are shown in Figs. 18 and 19, respectively. From Fig. 18,
the horizontal acceleration signal shows an obvious 1� component and 2� component, but the 2� component was



Fig. 19. Vertical acceleration signal at speed of 33,093 rpm: (a) waveform and (b) spectrum.
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Fig. 20. 3D waterfall plots of vibration acceleration signals in horizontal direction: (a) normal and (b) looseness fault.
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relatively weak. From Fig. 19, in the vertical acceleration signal, the 2� component and 3� component are basically the
same as the 1� component. The waveforms show a typical shock characteristic, with a truncated shape and longitudinal
asymmetricity.

According to an exchange with the trial running staff, it can be initially estimated that the fault for whole aero-engine
vibration may be caused by the looseness of the bearing housing. Therefore, in this study, fault simulations for the whole
aero-engine were performed using the established vibration modelling for a whole aero-engine by considering the
looseness fault. The simulation results were compared with the trial running signals to determine the mechanism of aero-
engine vibration.

4.2. Simulation of looseness fault

To simulate the aero-engine's looseness fault, first, the rotor unbalance excitations are considered, in which the
eccentricities of the fan disk, motor disk, compressor disk, turbine disk 1, and turbine disk 2 are all set as 0.01 mm. Then, the
looseness fault of the bearing housing is modelled. Assume that the equivalent stiffness between the bearing housing and
the casing is kf0 and looseness amount of the bearing housing is δ considering the segmentation linearization under the
condition of relative displacement of bearing housing and casing. Then, the segmentation stiffness kf is

kf ¼
kf0 ðxb�xc4δÞ
kf0=5 ð0rxb�xcrδÞ
5kf0 ðxb�xco0Þ

8><
>: (12)

where xb represents the displacement of the bearing housing and xc, the displacement of the casing. The calculation
formulas for the horizontal and vertical directions are the same.

In this study, the looseness faults at the fan support point S1 are considered. The horizontal and vertical looseness
between the bearing housing and the casing are set together, and their looseness amounts are all 1.0 μm.

Fig. 20 shows the simulation results for speeds of 24,000–35,000 rpm. Fig. 20(a) shows the simulation result under
normal conditions, and (b) shows the simulation result for the looseness fault. Fig. 20 shows that a looseness fault leads to a
vibration increase, and that with an increase in rotating speed, the imbalance forces increase rapidly such that the looseness
faults are fully excited, and many multiple-frequency components appear. Figs. 21 and 22 show the waveforms and
spectrums of the casing horizontal acceleration signals that are denoised by the auto correlation method. From the figures,
the vibration signals have obvious multiple-frequency components, such as 2� , 3� , 4� , and 5� , and these components'
amplitudes are basically the same as or exceed those of the 1� component. In addition, the waveforms also show a typical
shock characteristic, with a truncated shape and longitudinal asymmetricity.

It can be found out that the pseudo-resonance of the system would have been noted at 32,350 rpm in Fig. 22(b), and it
has a dominant frequency of 2� rotor speed; therefore, it can be inferred that it is appropriately characterised as the 2nd-
order super-harmonic of a system having a fundamental critical speed of 2�32,350 rpm or 64,700 rpm. The other pseudo-
resonance of the system, identified in Fig. 21, occurs at a speed of 25,900 rpm, which appears to be precisely 0.400 or
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Fig. 23. Waveform of pseudo-resonance obtained by Ehrich's model in the literature [14]: (a) waveform of pseudo-resonance at one-half of the system's
critical speed and (b) waveform of pseudo-resonance at two-fifth of the system's critical speed.
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two-fifth of the fundamental critical speed. As shown in Fig. 23, such pseudo-resonances were also obtained by Ehrich's
model in the literature [14], which involved a single-mass/single-degree of freedom connected by a single nonlinear (that is,
bilinear) spring and a linear damper to ground. The comparisons between Figs. 22(a) and 23(a) and between Figs. 21(a) and
23(b) show the very good agreement of the waveforms generated in Ehrich's model and the proposed model.
4.3. Fault analysis

From a comparison between the experiment and the simulation results, it can be found that the looseness fault is easily
excited at high speeds because of the great imbalance force, and when considering the looseness fault, the time waveform of
the vibration acceleration of the casing exhibits a typical shock characteristic with a truncated shape and longitudinal
asymmetricity; furthermore, there are many obvious multiple-frequency components in the spectrum.

Through the comparison analysis, excellent qualitative consistency is found between the simulation results and the
experimental results. Therefore, it can be shown that the main fault in this aero-engine is connection looseness between the
bearing housing and the casing.

It should be noted that an actual aero-engine structure is very complex and it is very difficult to completely simulate its
dynamic behaviours; therefore, in this study, the fault simulation of the actual aero-engine can only simulate the fault
characteristics in the time domain and frequency domain, and it is difficult to quantitatively simulate the dynamics
behaviours.
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5. Conclusions
(1)
 To investigate whole aero-engine vibration, a new coupling dynamic model for a whole aero-engine is established. In
this coupling system, the rotor and casing systems are modelled using the finite element method. The shear
deformations and inertias of the rotor and casing finite element unit are considered. The gyroscopic moments of the
rotors are included. The nonlinear factors of the ball bearings are also considered. The numerical integration in the time
domain, which combines the Newmark-β method and the Zhai method, is used to obtain the system's dynamic
responses.
(2)
 In this study, four types of connection forms are defined: support connection between rotor and casing, coupling
connection between rotors, elastic connection between casings, and installation connection between casing and base. By
synthetically using these connections, the whole aero-engine with multiple rotors and casings can be modelled very
conveniently.
(3)
 For a practical rotor–ball-bearing rig and rotor–ball-bearing–casing fault tester, a rotor–support coupling dynamic
model and rotor–support–casing coupling dynamic model are established. The rotor tester is used for modal
experiments, and good consistencies are found between the calculation results and the experimental results. Therefore,
the results show that the proposed model is correct and effective.
(4)
 The vibration model for a certain type of missile turbofan whole aero-engine is established. Vibration responses
including looseness fault are simulated; and the simulation results and real trial running vibration signals show good
consistency, which is revealed by the mechanism of the aero-engine vibration fault.
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