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A novel method called hyper-spherical distance discrimination (HDD) is proposed in order
to meet the requirement of aero-engine rolling bearing on-line monitoring. In proposed
method, original multi-dimensional features extracted from vibration acceleration signal
are transformed to the same dimensional reconstructed features by de-correlation and nor-
malization while the distribution of feature vectors is transformed from hyper-ellipsoid to
hyper-sphere. Then, a simple model built up by distance discriminant analysis is used for
rolling bearing fault detection and degradation assessment. HDD is compared with the sup-
port vector data description (SVDD) and the self-organizing map (SOM) in rolling bearing
fault simulation experiments. The results show that the HDD method is superior to the
SVDD and SOM in terms of recognition rate. Besides, HDD is applied to a run-to-failure test
of aero-engine rolling bearing. It proves that the evaluating indicator obtained by HDD
method is able to reflect the degradation tendency of rolling bearing, and it is also more
sensitive to initial fault than the root mean square (RMS) of vibration acceleration signal.
With the advantages of low computational complexity and no need to tuning parameters,
HDD method can be applied to practical engineering effectively.

� 2018 Published by Elsevier Ltd.
1. Introduction

Rolling bearing failure is one of the leading causes of aviation accidents. In order to maintain aero-engine uptime at the
highest possible level and reduce maintenance costs, maintenance should be carried out in a proactive way. It means a trans-
formation of maintenance strategy from the traditional fail-and-fix practices (diagnostics) to a predict-and-prevent method-
ology (prognostics) [1]. However, predict-and-prevent methodology is based on effective condition monitoring technology.

Condition monitoring data are very versatile, including vibration data, acoustic data, oil analysis data, etc. Vibration data
collection is a widely used approach for fault detection [2–4]. However, the sensitivity of various original features that are
characteristics of bearing performance may vary significantly under different working conditions [5]. Hence, it is critical to
devise an evaluating indicator that provides a useful and automatic guidance on using the most effective features for bearing
degradation assessment without human intervention.
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Generally, fault detection and condition monitoring of the aero-engine rolling bearings should be considered as a data
domain description problem (also called one-class classification), in view of that the fault samples are hard to be acquired
in engineering. That is, when nothing about the outlier distribution can be assumed, only a description of the boundary of the
target class can be made [6]. Since the on-line monitoring of aero-engine rolling bearing can be regarded as a data domain
description problem, it is necessary to study the distribution of multidimensional feature vectors in space in order to estab-
lish a more accurate model by greater using the prior knowledge. The distribution of feature vectors cannot be visualized
because the dimensionality of feature vectors is usually more than three, but its two-dimensional (2-D) projection can be
easily study. If the projection on each 2-D feature plane tends to an ellipse, we can infer that the distribution of feature vec-
tors in high-dimension space tends to a hyper-ellipsoid. When different features are chosen, length and direction of the
hyper-ellipsoid principal axis may change. Hence a strongly nonlinear algorithm is needed for describing such a complicated
distribution. Different methods have been developed to solve this problem such as SVDD [7–9], SOM [10–12], gaussian mix-
ture model (GMM) [5,13], etc, and have been proved effective in experiments. However, these methods have a deficiency of
high computational complexity when training. The bearing detection model is envisioned to reside in the engine controller
and operates on-board. The engine controller has to carefully prioritize and distribute computing resources among multiple
processes to ensure the safety of the critical tasks such as flight and engine controls. Therefore, a simple fusion model is
strongly preferable to a computationally complex one [14].

According to above analysis, the limited computing resources in engineering and the complexity of the model constitute a
contradiction. The reason why the models of high computational complexity are chosen is because the described boundary is
complicated. So if it is possible to improve the spatial distribution of feature vectors, then it is possible to greatly simplify the
algorithm describing the boundary of the data domain. Based on this, a novel method called hyper-spherical distance dis-
crimination (HDD) is proposed. Compared with some typical data domain description like SVDD, SOM etc., HDD has the
advantages of low computational complexity and no need to tuning parameters during the training stage. In this study,
we implemented HDD on aero-engine rolling bearing monitoring.

The remaining part of the paper is organized as follows. Section 2 introduces the multi-dimensional features used in fol-
lowing sections and briefly describes how to extract these features. In Section 3, two kinds of experiments (including exper-
iment 1: rolling bearing fault simulation experiment and experiment 2: run-to-failure test) were carried out and the
distribution of original feature vectors is discussed in detail. The discussion reveals a potential approach for simplifying
the distribution. Section 4 proposes a novel method for bearing fault detection and degradation assessment. Section 5 shows
the results of two experiments. The performance of proposed method under different operating conditions and different
measurement points is compared with SVDD and SOM. Section 6 discusses some problems in detail. Finally, conclusions
are made in Section 7.
2. Feature extraction

2.1. Time-domain features

Six dimensionless time-domain features used in this study are summarized in Table 1, including shape indicator TSI, crest
indicator TCI, impulse indicator TMI, clearance indicator TCLI, kurtosis TKU and skewness TSK, where yi is raw waveform data, ypi
is the maximum absolute value of each section where the raw waveform data is divided into 10 sections.
2.2. Frequency-domain features

Three dimensionless frequency-domain features used in this study are summarized in Table 2, including frequency center
FFC, mean square of frequency FMSF and variance of frequency FVF, where S(fi) is the spectral amplitude at frequency fi.
Table 1
Dimensionless time-domain features.
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Table 2
Dimensionless time-domain features.
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There should be some differences between the healthy bearing and fault bearing both in the time-domain waveform and
spectrum of vibration acceleration signal. This is why such frequently-used time-domain and frequency-domain features are
calculated for bearing fault detection. However, for the surface damage fault of rolling bearing, the characteristic frequencies
(or called ball-pass frequencies) are of great significance. Hence, the features corresponding to the characteristic frequencies
are extracted in Section 2.3 by applying wavelet transform.
2.3. Wavelet-domain features

As the rolling elements strike a local fault on the outer or inner race, a shock is introduced that excites high frequency
resonances of the whole structure between the bearing and the transducer [3]. The key to detecting bearing faults is to cap-
ture the low amplitude response caused by bearing defect excitation without including the high amplitude rotational vibra-
tion signals and system fundamental resonant frequency responses [15]. To accomplish this, a bandpass filter is used to
isolate the signal.

The wavelet transform has the function of adaptive band-pass filtering. Original signal can be decomposed into several
sub-signals including detailed signals and approximate signal after wavelet transform. These sub-signals can be treated
as the results from the original signal passing through different band-pass filters whose center frequencies and bandwidths
are adaptively determined by original signal. And the original signal is the sum of these sub-signals. For example, suppose
here is a bearing vibration acceleration original signal whose sampling frequency fs = 10,240 Hz, then the frequency band of
this original signal is 0–5120 Hz. Meanwhile, suppose the original signal is decomposed into 6 sub-signals after wavelet
decomposition, including 5 detailed signals d1, d2, d3, d4, d5 and 1 approximate signal a5. Then, approximately, we can
think that the frequency bands of such sub-signals are d1:2560–5120 Hz, d2: 1280–2560 Hz, d3: 640–1280 Hz, d4: 320–
640 Hz, d5: 160–320 Hz and a5: 0–160 Hz. Generally, such detailed signals cover the rolling bearing resonance fre-
quency bands. However, for different signal samples, the structural resonance frequencies caused by the local damage of roll-
ing bearings are usually not fixed. So in order to find which ‘‘band-pass filter” is the best, we design a simple algorithm as
following.

By taking the wavelet transform of the bearing signals and postprocessing it with the Hilbert transform and Fourier trans-
form, the wavelet envelope spectrum is obtained. The wavelet envelope spectrum is able to reveal the frequency and ampli-
tude uniquely associated with the damaged bearing component. In the wavelet envelope spectrum W(f), suppose spectral
peaks exist at characteristic frequency fd, which is the ball-pass frequency of outer ring (BPFO), or the ball-pass frequency
of inner ring (BPFI), or the ball-spin frequency (BSF) and their frequency multiplications, fe is the analyzed bandwidth (gen-
erally satisfy fe > 3max(fd)), and Ne is the number of spectrum lines. Then, the average of envelope spectrum Sea can be cal-
culated by
Sea ¼ 1
Ne

XNe

i¼0

Wðf iÞ ð1Þ
Let Sed to be the average of envelope spectrum at fd and its kth harmonic, ne is the number of spectrum line corresponding
to fd and its kth harmonic, then
Sed ¼ 1
ne

Xne
k¼1

WðkfdÞ ð2Þ
and the dimensionless feature is given by
DSe ¼ Sed
Sea

ð3Þ
In general, the characteristic frequency calculated by bearing geometry and rotation speed is not exactly equal to the
actual characteristic frequency. Hence a maximum spectral value at fd and its neighborhoods is chosen as W(fd).

In specific calculation process, the signal is decomposed into 5 levels by db8 wavelet basis, including 5 detailed signals d1,
d2, d3, d4, d5 and 1 approximate signal a5. For each characteristic frequency, the 5 detailed signals are used to calculate the
DSe according to Eq. (3), the maximum value of which is chosen as the dimensionless wavelet-domain feature (the feature of
BPFO WBPFO, the feature of BPFI WBPFI or the feature of BSF WBSF).
3. Experiments and data analysis

In this section, two kinds of experiments including experiment 1: rolling bearing fault simulation experiment and exper-
iment 2: rolling bearing run-to-failure test were carried out. Taking the data acquired from experiment 1 as an example, the
distribution of original feature vectors is discussed in detail. The discussion reveals a potential approach for simplifying the
distribution.
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3.1. Experiment 1: Fault simulation experiment of rolling bearing

3.1.1. Aero-engine rotor experimental rig
To simulate the rotor vibration of a real aero-engine, an aero-engine rotor experimental rig was designed and manufac-

tured [16]. In comparison to a real aero-engine, the tester has the following features: (1) its size is one third that of a real
aero-engine, and its shape is similar to the stator of an aero-engine; (2) its internal structure is simplified: the core machine
is simplified to a 0-2-0 support structure, which is a rotor with two disks supported on two bearings, where the outsides of
the two disks have no bearings s, and the support stiffness is adjustable to adjust the dynamic characteristics of the system;
the multistage compressor is simplified to a single stage disk structure; the compressor blade is simplified to an inclined
plane shape; (3) its shaft is solid and rigid and its maximal rotating speed is 7000 rpm; and (4) the rotor is driven by the
motor, and the flame flask is canceled. Therefore, the aero-engine rotor tester is a single-rotor system model. A full-scale
photo is shown in Fig. 1(a), and a section drawing is shown in Fig. 1(b).

In the aero-engine rotor experimental rig, the compressor part of the rotor is supported by a roller bearing, and the tur-
bine part of the rotor is supported by a ball bearing. In this study, faults were introduced on the ball bearings, and fault sim-
ulation experiments were carried out.
3.1.2. Experiment introduction
In online monitoring, the sensor usually cannot be placed on the bearing house of aero-engine. Hence, the vibration accel-

eration sensors were respectively placed on the vertical and horizontal direction of the turbine casing, as shown in Fig. 1(a).
However, it also brings a challenge to fault detection. According to reference [16], with a low connect stiffness, there was
great attenuation of the vibration response on the casing, while the impulse characteristic of the ball bearings fault was very
weak, submerged in other signals.

In order to study the casing responses caused by ball bearing faults, defects were artificially seeded in 6206 ball bearings
(as shown in Fig. 2) in the following three configurations: (1) a crack with about 0.6 mmwidth on outer ring; (2) a crack with
about 0.6 mm width on inner ring; (3) a dent with about 1 mm diameter and 2 mm depth on ball. The 6206 ball bearing
dimensions are listed in Table 3.

Two groups of tests were carried out, where the rotational speeds were 1500 rpm and 1800 rpm respectively. Vibration
signals were collected by means of the USB9234 data acquisition card of the NI Company, the 4805 type ICP acceleration
sensors of B&K Company were used to pick up the acceleration signals, and the eddy current sensors were used to measure
the rotating speeds. The sampling rate was 10.24 kHz. Each sample contains 8192 points, so the frequency resolution is 1.25
Hz. For 6206 ball bearing, corresponding fault characteristic frequencies in 1500 rpm are BPFO = 89.27 Hz, BPFI = 135.73 Hz
and BSF = 57.95 Hz, corresponding fault characteristic frequencies in 1800 rpm are BPFO = 107.12 Hz, BPFI = 162.88 Hz and
BSF = 69.53 Hz. Hence, the frequency resolution is sufficient for detecting bearing fault characteristic frequencies.
3.2. Experiment 2: run-to-failure test of rolling bearing

A run-to-failure test was performed to acquire the signal of bearings over a whole lifetime. In this experiment, the faults
of rolling bearing were naturally generated, as opposed to the experiment 1 in which the data is for artificially inserted faults,
as well as the operating conditions were close to the practical condition.
(a)Photo (b)Section drawing
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Fig. 1. Aero-engine rotor experimental rig.



(a) Outer ring fault (b) Inner ring fault (c) Ball fault

Fig. 2. Faults in 6206 ball bearing of aero-engine rotor experimental rig.

Table 3
6206 ball bearing dimensions (unit:mm).

Diameter of inner ring Diameter of outer ring Diameter of ball Thick Pitch diameter

30 62 9.5 16 46
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3.2.1. Aero-engine ball bearing failure monitoring system
The experimental facilities called aero-engine ball bearing failure monitoring system is designed and developed by

Luoyang Bearing Research Institute, composed of a rolling bearing test rig, a power-drive module, a lubrication system,
hydraulic loading system, computer monitoring system, etc., as shown in Fig. 3.

Fig. 4 is a section diagram of the rolling bearing test rig. The tested bearing was mounted on the cantilever end of the
spindle and was lubricated by 928 aviation lubricating oil. The radial and axial loads were applied through the hydraulic
loading system. The whole experiment was controlled and monitored by the computer monitoring system.
3.2.2. Experiment introduction
The dimensions of tested bearing are listed in Table 3. In this test, the operating conditions of tested bearing were close to

the practical condition in aero-engine: the rotating speed of the shaft was 12,000 rpm, the radial load was 2.5 kN and the
axial load was 3.5 kN. Vibration signals were collected by means of the USB-9234 data acquisition card of the NI Company,
the YD-3 type acceleration sensors of Far East Vibration (Beijing) System Engineering Technology Company were used to
pick up the acceleration signals. The sampling rate was 10.24 kHz.

Due to the limitation of time and economy, the method of cutting off the oil supply of the tested ball bearing was used to
accelerate the bearing degradation. When the test is carried out for a period of time under the condition of insufficient lubri-
cation, the torque of electric motor will increase. Finally, when the motor torque increases over the threshold (set based on
previous experiments), the system will automatically trigger protection to suspend the test. At such a time, an initial fault
probably occurs in the tested bearing. Therefore, we took the test procedure as follows:
Electric motor Tested bearing

Hydraulic loading system
Lubrication system 

Computer monitoring system

Fig. 3. Aero-engine ball bearing failure monitoring system.



Radial loading  

Base

Electric motor
Tested bearing

Axial loading

Fig. 4. Section diagram of the rolling bearing test rig.
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Step 1. The test was carried out under rated condition (the rotating speed of the shaft was 12,000 rpm, the radial load was
2.5 kN and the axial load was 3.5 kN) for approximately an hour. It is obvious that the tested bearing is healthy during this
period.
Step 2. Then, the oil supply was cut off and the tested bearing operated under the condition of insufficient lubrication. The
test was suspended when the system automatically triggers protection.
Step 3. The test was resumed under the rated condition. The test was stopped until the monitored RMS value of vibration
acceleration was 3 times of the average RMS value in Step 1.

In fact, in order to prove above test procedures are doable, a pre-experiment was conducted. This will be discussed in
detail in Section 5.2.1.

3.3. Experimental data analysis

3.3.1. Original features
Take the vibration acceleration signal monitored at vertical casing measurement point in 1500 rpm of experiment 1 for

example, the scatter plots of 12 original features (see Section 2 for details) are shown in Fig. 5, where the X-axis is the
sequence number of samples, No. 1–110 are points of healthy sample, No. 111–220 are points of inner ring fault sample,
No. 221–330 are points of outer ring fault sample and No. 331–440 are points of ball fault sample.

In Fig. 5, it can be seen that: (1) the sensitivity of various original features may vary significantly under different bearing
fault type; (2) the fault of inner ring is relatively easy to be detected while ball fault is almost impossible to be detected by
single original feature.

Therefore, it is very critical to devise an evaluating indicator (EI) that provides a useful and automatic guidance on using
the most effective information in features for bearing fault detection and degradation assessment.

3.3.2. Distribution of original feature vectors
As mentioned in Section 1, it is necessary to study the distribution of the original feature vectors. The 12 dimensional

features have been obtained. The distribution of feature vectors cannot be visualized, but its 2-D projection can be easily
study. Fig. 6 shows the 2-D projection distribution of normalized feature vectors: Fig. 6(a) is the projection distribution in
TSI � FFC plane, Fig. 6(b) is the projection distribution in FVF � FFC plane. TSI, FFC and FVF were extracted from the vibration
acceleration signal of healthy rolling bearing.

After normalization, every single feature satisfy l = 0 and r = 1, where l is the sample average and r is the sample stan-
dard deviation. Therefore, the distribution can be described in the approximate scale. There are C2

12 = 66 kinds of combina-
tions of 2-D projection distributions, but all can be grouped into the two categories represented in Fig. 6. In Fig. 6(a), the
boundary of the distribution can be approximately described as a circle (the radius of the circle is 2.5), whereas the boundary
of the distribution in Fig. 6(b) tends to be an ellipse, whose principal axis are not parallel to the coordinate axes. It is desirable
to describe the distribution by using a circle, however, if a circle is used for describing the distribution like Fig. 6(b), two
types of errors (false positive and false negative) will be caused inevitably, as shown in Fig. 7.

Furthermore, it could be found in mathematical that the reason why the distribution in Fig. 6(b) is elliptical is because
that there is a strong correlation between the features. Namely, when FFC is larger, the FVF tends to be larger (cause that
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Fig. 5. Scatter plots of original features.
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the calculating formula of FVF contains FFC, see Table 2). Generally, the correlation between the features can be represented
by the correlation coefficient q, which is given by
q ¼ n
Pn

i¼1xiyi �
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i¼1xi �
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where xi, yi are the values of different features, n is sample size. The correlation matrix is shown in Table 4 and the correlation
coefficient q of TSI and FFC, FVF and FFC are in bold.
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Fig. 7. Errors caused by inappropriate description of actual distribution.

Table 4
Correlation matrix of original features.

TSI TCI TMI TCLI TKU TSK FFC FMSF FVF WBPFO WBPFI WBSF

TSI 1.00 0.62 0.46 0.62 0.80 0.87 0.08 0.09 0.12 �0.12 �0.14 0.19
TCI 1.00 0.98 1.00 0.72 0.71 0.15 0.15 0.11 �0.11 �0.24 �0.03
TMI 1.00 0.98 0.62 0.59 0.16 0.15 0.10 �0.09 �0.23 �0.09
TCLI 1.00 0.72 0.71 0.15 0.15 0.11 �0.11 �0.24 �0.03
TKU 1.00 0.98 0.13 0.12 0.08 �0.15 �0.2 0.12
TSK 1.00 0.12 0.12 0.10 �0.13 �0.18 0.16
FFC 1.00 0.99 0.83 �0.07 �0.07 �0.02
FMSF 1.00 0.90 �0.06 �0.07 �0.03
FVF sym. 1.00 �0.04 �0.06 �0.08
WBPFO 1.00 0.05 0.11
WBPFI 1.00 0.14
WBSF 1.00
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There is a strong correlation between FFC and FVF, but the FFC is more sensitive to the inner ring fault while FVF is more
sensitive to the outer ring fault (see Fig. 5). Namely, features with strong correlation may also contain complementary infor-
mation that is helpful for fault detection.

The above conclusions of 2-D projection can be extended to the original feature space: if the correlation coefficient q of
each pair of features is small, then the distribution of feature vectors in original feature space tends to a hypersphere, whose
boundary can be described simply; otherwise, the distribution tends to a hyper-ellipsoid, whose boundary is hard to be
described. However, the features with strong correlation may be chosen, because they may also contain information that
is complementary for fault detection.
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4. Hyper-spherical distance discrimination

In this section, the hyper-spherical distance discrimination method is proposed for rolling bearing fault detection and
degradation assessment. Hyper-spherical distance discrimination consists of two parts, the hyper-spheroidization and dis-
tance discriminant analysis.

4.1. Hyper-spheroidization

According to above analysis, the distribution of feature vectors can be transformed from hyper-ellipsoid to hyper-sphere
by de-correlation and normalization. This procedure is called hyper-spheroidization.

4.1.1. Eliminating the correlation
Let xi be normalized feature vectors, then Ri xi = 0. Suppose the new coordinate system after projection transformation is

{w1, w2, . . . , wd}, where d is feature dimensionality, wi are orthonormal basis vectors subject to || wi ||2 = 1, wi
Twj =0 (i – j).

Suppose projection vectors of xi in new coordinate system are zi = (zi1, zi2, . . . , zid), where zij =wj
Txi, zij is the j-th coordinate of

xi in new coordinate system. Reconstructing the xi based on the zi, then
x̂i ¼
Xd
j¼1

zijwj ð5Þ
Taking the whole training set into consideration, the distance between xi and x̂i is
Xn
i¼1

Xd
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zijwj � xi

�����
�����
2

2

¼
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zTi zi � 2
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i¼1

xixTi

 !
W

 !
ð6Þ
According to the criterion of minimum reconstruction error, Eq. (6) should be minimized. Considering that wj are
orthonormal basis vectors, Ri xi xiT is covariance matrix, the objective function can be written as
min
W

� trðWTXXTWÞ
s:t: WTW ¼ I

ð7Þ
Eq. (7) can be solved by Lagrangian multiplier method.
The principle of the de-correlation method stated above is essentially the same as the principle of principal component

analysis (PCA), which is well known as a feature dimensionality reduction method and have been widely used in fault diag-
nosis of rolling bearing [17,18]. However, the former just make a linear transformation and the whole information is pre-
served, while principle of principal component analysis usually pays attention to feature dimensionality reduction, which
may cause information loss. The loss of information may be noise while it can also be the helpful information. Namely,
reducing the dimensionality may not be conducive to classification [19]. In this study, we would like to focus on eliminating
the correlation of original features instead of reducing feature dimensionality.

4.1.2. Normalization
The distribution of zi also tends to be an ellipse, but the principal axes of ellipse are parallel to coordinate axes. This means

that the distribution of zi can be transformed to a hypersphere by normalization. The normalized zi⁄ is given by
z�i ¼ ðz�i1; z�i2; . . . ; z�idÞ; z�ij ¼
zij � l̂j

r̂j
ð8Þ
where l̂j is the sample average of the j-th features used as an estimate of the population mean; r̂j is the sample standard
deviation used as an estimate of the population standard deviation:
l̂j ¼ 1
n

Xn
i¼1

zij; r̂2
j ¼ 1

n� 1

Xn
i¼1

ðzij � l̂jÞ2 ð9Þ
4.2. Boundary description

Suppose the distribution of restructured feature vectors is a hyper-sphere, then we can use a hyper-spherical boundary to
describe it. What we need to do is to determine the center and radius. In this section, distance discriminant analysis method
is applied for solving this problem.

Distance discriminant analysis is used to classify sample points by calculating the distance between the sample point and
the population. In d-dimensional feature space, consider using a d-dimensional vector x0 to represent a sample set whose
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size is n. It is hope that the quadratic sum of distances between x0 and each sample i (i = 1, . . ., n) is as small as possible.
Square error criterion function J0(x0) is defined as
J0ðx0Þ ¼
Xn
i¼1

x0 � xik k2 ð10Þ
then
x0 ¼ l̂ ¼ 1
n

Xn
i¼1

xi ð11Þ
This conclusion can be proved as follows:
J0ðx0Þ ¼
Xn
i¼1

ðx0 � l̂Þ � ðxi � l̂Þ�� ��2 ¼
Xn
i¼1

x0 � l̂
�� ��2 � 2ðx0 � l̂ÞT

Xn
i¼1

ðxi � l̂Þ þ
Xn
i¼1

xi � l̂
�� ��2

¼
Xn
i¼1

x0 � l̂
�� ��2 þXn

i¼1

xi � l̂
�� ��2 ð12Þ
The second item on the right of Eq. (12) does not depend on x0, that is, the Eq. (10) reach a minimum under the condition
of Eq. (11). Therefore, the sample average can represent the center of distribution. Note that the sample average of normal-
ized feature is zero, so the distribution of zi⁄ centers at the origin.

In view of that the fault samples are hard to be acquired in engineering, only the sample of healthy bearing can be used for
training. According to some kind of measure criteria, the distance Di between the feature vector and the mean vector can be
calculated. Meanwhile, the threshold Dmax is set for classification. If Di � Dmax, then the i-th sample point is classified as
healthy, otherwise the abnormal. The boundary described by distance discriminant analysis is a hypersphere centering at
the origin of radius Dmax, as shown in Fig. 8. If the Euclidean distance is used as a measure criterion, then
Di ¼ z�i
�� ��

2 ð13Þ

According to Eq. (13), if feature values are monotonic, Di have a specific meaning: it can reflect the degeneration degree of

rolling bearing, hence Di can be used as the evaluating indicator of rolling bearing. As shown in Fig. 9, the more serious the
damage of bearing, the greater the Di. Furthermore, multiple thresholds such as warning, abnormal, etc, can be set according
to appropriate criteria. We would like to provide some perspectives in Section 6 to explain how this would be done in prac-
tice. For simplicity, only one threshold Dmax is set in experiments to determine whether the bearing is normal.
4.3. Algorithm flow

The flow of aero-engine rolling bearing fault detection and condition monitoring is shown in Fig. 10, consisting of model
training and condition assessment.

Assuming that evaluating indicator (EI) obtained from the training set follow the normal distribution, then define
Dmax ¼ l̂EI þ 3r̂EI ð14Þ
where l̂EI, r̂EI are respectively the sample average and the sample standard deviation of EI.
Dmaxmean vector

Fig. 8. Diagrammatic sketch of distance discriminant analysis.
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Fig. 9. Diagrammatic of bearing condition assessment.
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Fig. 10. Flow of aero-engine rolling bearing fault detection and condition monitoring.
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5. Results and method validation

5.1. Results of experiment 1

In experiment 1, HDD is compared with SVDD and SOM. For all methods, the randomly selected 50% samples of healthy
bearing were used for training and all the samples (including healthy, inner ring fault, outer ring fault, ball fault) were used
for testing.

For proposed method, Di is regarded as an EI of rolling bearing. For SVDD method, decision value is regarded as the EI. For
SOM method, the minimum matching distance between the feature vector and the weight vector of the nearest neurons is
regarded as the EI. The SVDD is achieved by applying the LibSVM-3.18 [20] and the SOM is achieved by secondary develop-
ment of the SOM-toolbox [21]. All parameters of both methods were set by 10-fold cross validation. The threshold Dmax of
each method is given by Eq. (14).

The validity of HDD is tested on data from different operating conditions and measurement points including 1500 rpm at
vertical measurement point, 1500 rpm at horizontal casing measurement point and 1800 rpm at vertical measurement
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point. The results and corresponding confusion matrices of different methods are shown respectively in Figs. 11–13, where
the X-axis is the sequence numbers of samples, No. 1–110 are points of healthy sample, No. 111–220 are points of inner ring
fault sample, No. 221–330 are points of outer ring fault sample and No. 331–440 are points of ball fault sample. Note that the
No. 1–55 samples were the randomly selected 50% samples of healthy bearing used for training. The recognition rates are
shown in Tables 5–7 respectively.

Compare Figs. 11–13(a) to Fig. 5: The evaluating indicator obtained by proposed method provides a useful and automatic
(sensitive to all types of faults) guidance on using the most effective information in original features. According to Figs. 11–
13 and Tables 5–7, although the speeds and measurement points are changed, proposed method is always superior to SVDD
and SOM.
Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 7 FG 103 TN 
Outer ring fault 27 FG 83 TN 

Ball fault 53 FG 57 TN 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 0 FG 110 TN 
Outer ring fault 0 FG 110 TN 

Ball fault 3 FG 107 TN 

Dmax=0.11

Dmax=5.889 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 3 FG 107 TN 
Outer ring fault 22 FG 88 TN 

Ball fault 43 FG 67 TN 
Dmax=0.393 

(a)

 (b) 

(c) 

Fig. 11. Results of different methods in1500 rpm at vertical measurement point: (a) HDD; (b) SVDD on original features; (c) SOM on original features; (d)
SVDD on reconstructed features; (e) SOM on reconstructed features.



Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 0 FG 110 TN 
Outer ring fault 1 FG 109 TN 

Ball fault 22 FG 88 TN 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 0 FG 110 TN 
Outer ring fault 21 FG 89 TN 

Ball fault 25 FG 85 TN 

Dmax=4.144 

Dmax=0.052 

(d) 

(e)

Fig. 11 (continued)
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Furthermore, if assuming that simpler distribution is easier to be described, then when using zi⁄ as input vector, the per-
formance of SVDD and SOM should be improved. This assumption has been confirmed, as shown in Figs. 11–13 and Tables 5–
7, when reconstructed features vectors are used as input vectors, the recognition rate of SVDD and SOM are improved sig-
nificantly. It means that classifier performance is able to be improved by pre-processing of appropriate feature
transformation.

5.2. Results of experiment 2

As mentioned in Section 3.2.2, a pre-experiment was conducted before the formal experiment to prove the stated test
procedures are doable.

5.2.1. Pre-experiment
The test procedures have been stated in Section 3.2.2. In the pre-experiment, only the Step 1 and Step 2 are taken. The

tested bearing has been operating approximately 1 h in Step 2 before the system automatically triggers protection. When the
system automatically triggered protection, tested bearing was removed and decomposed.

As shown in Fig. 14, the inner ring, outer ring and rolling elements of tested bearing have a slight spall. Then the scanning
electron microscope was used for further inspection, shown in Fig. 15.

There is a slight spall on the surface of outer ring. In inner ring, the characteristics of metal adhesion can be seen. The size
of small pieces of metal adhesion is approximately 20 lm. Besides, as shown in Fig. 15(f), some pits corresponding to the
spall can be seen. Therefore, it can draw the conclusion that tested bearing have a slight spall after Step 2. Note that the spall
is a common failure mode of aero-engine ball bearing.

5.2.2. Formal experiment
HDD is applied in a run-to-failure test of aero-engine ball bearing. The first 50% data collected from Step 1 is used for

training while 100% data collected from Step 1 as well as 100% data collected from Step 3 is used for testing. Considering
that RMS of vibration acceleration signal is a widely used feature which is sensitive to the spall fault of ball bearing. The
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RMS is also chosen as one of the input features in this experiment, in addition to the features represented in Section 2. Mean-
while, the EI obtained from HDD is compared with the RMS, as shown in Fig. 16. The threshold Dmax is given by Eq. (14).

As we can see in the Fig. 16, both EI and RMS are below the Dmax during the test of Step 1. During the test of Step 3, the
tendency of EI and RMS are similar, however, there is a difference between EI and RMS in the early stage of Step 3. The mag-
nification figures of this stage are shown in Fig. 17. There is the volatility for both EI and RMS. However, the first time EI
exceeds the threshold Dmax is at t1 = 8s while the RMS is at t3 = 360 s; the last time EI below the threshold Dmax is at t2 =
1248 s while the RMS is at t4 = 1600 s. In Section 5.2.1, it has been proved that there is a slight spall fault in tested bearing
at the beginning of Step 3. Therefore, the EI obtained by proposed method is able to reflect the degradation tendency of roll-
ing bearing, and it is also more sensitive to initial fault than the RMS.
Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 79 FG 31 TN 
Outer ring fault 9 FG 101 TN 

Ball fault 50 FG 60 TN 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 1 FG 109 TN 
Outer ring fault 0 FG 110 TN 

Ball fault 1 FG 109 TN 

Dmax=0.012 

Dmax=5.951 

(a)

(b)

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 78 FG 32 TN 
Outer ring fault 2 FG 108 TN 

Ball fault 40 FG 70 TN Dmax=0.512 

(c)

Fig. 12. Results of different methods in1500 rpm at horizontal measurement point: (a) HDD; (b) SVDD on original features; (c) SOM on original features; (d)
SVDD on reconstructed features; (e) SOM on reconstructed features.



Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 40FG 70 TN 
Outer ring fault 9 FG 101 TN 

Ball fault 13 FG 97 TN 
Dmax=0.139 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 36 FG 74 TN 
Outer ring fault 1 FG 109 TN 

Ball fault 14 FG 96 TN 
Dmax=4.574 

(d)

(e)

Fig. 12 (continued)
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6. Discussion

The results of experiments show the superiority of hyper-spherical distance discrimination method. A question is that
why proposed method performs well. The explanation is as follow. Firstly, it is easier to describe a hypersphere than to
describe a hyperellipsoid. This is also the reason why SVDD and SOM perform better on reconstructed features than on orig-
inal features. Secondly, distance discriminant analysis has an assumption that the described distribution is hypersphere
while the distribution after feature transformation is indeed hyperspherical. Therefore, two kinds of errors shown in
Fig. 7 can be avoided.

Hyper-spherical distance discrimination can be considered as a feature fusion method, too. Reviewing the conclusion
draw in experiment 2 that the evaluating indicator obtained by proposed method is able to reflect the degradation tendency
of rolling bearing, and it is also more sensitive to initial fault than RMS. An explanation is that the evaluating indicator is
dominated by some features (like kurtosis, skewness, etc.) more sensitive to initial fault than RMS at the beginning. Accom-
panying the development of bearing fault, theses features sensitive to initial fault tend to be saturation and the evaluating
indicator is dominated by RMS. Therefore, the evaluating indicator obtained by proposed method can adaptively use the
most effective features for bearing degradation assessment without human intervention.

In addition, there are some interesting questions we want to make a further discussion.
6.1. Threshold

For proving the validity of proposed method, a threshold Dmax is set according to Eq. (14). A question is that whether this
threshold is appropriate, especially the thresholds of SVDD and SOM are also set by Eq. (14).

On the one hand, the reason why such a threshold setting criteria is introduced into this paper is for the convenience that
proposed method can be compared to different methods quantitatively. If the probability distributions of the evaluating indi-
cator like Fig. 18(a), no matter what the threshold is, there is always a large error. By comparison, the Fig. 18(b) is better.
What should make a point is that different methods lead to the different probability distributions of the evaluating indicator,
a better result like Fig. 18(b) is wanted. On the other hand, threshold indeed affects the result of the certain method a lot. If
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we want to get a minimum error ratio, a good threshold like D1 is desirable compare to D2. However, in view of that the fault
data of aero-engine rolling bearing are hard to be acquired in engineering, only the healthy bearing data can be used for set-
ting the threshold. If the probability distributions subject to normal distribution, then Dmax = l + 3r means approximately
99.73% samples of healthy bearing are within the range of threshold. In other word, the threshold Dmax corresponds to a con-
fidence of 99.73%. Similarly, l + 2r corresponds to a confidence of 95.44%, etc. Hence, multiple thresholds such as warning,
abnormal, etc, can be set according to appropriate confidence. But there is also a problem that the probability distributions
are unknown in practical engineering. An alternative solution is to set the thresholds based on the methods of probability
density estimation, but this will increase the computation. How to set thresholds appropriately still need further study.
Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 1 FG 109 TN 
Outer ring fault 2 FG 108 TN 

Ball fault 21 FG 89 TN 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 1 FG 109 TN 
Outer ring fault 0 FG 110 TN 

Ball fault 3 FG 107 TN 

Dmax=0.009 

Dmax=6.156 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 108 TP 2 FP 
Inner ring fault 2 FG 108 TN 
Outer ring fault 3 FG 107 TN 

Ball fault 23 FG 87 TN 

Dmax=0.441 

(a)

(b)

(c)

Fig. 13. Results of different methods in1800 rpm at vertical measurement point: (a) HDD; (b) SVDD on original features; (c) SOM on original features; (d)
SVDD on reconstructed features; (e) SOM on reconstructed features.



Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 1 FG 109 TN 
Outer ring fault 0 FG 110 TN 

Ball fault 17 FG 93 TN 

Confusion matrix 

  Predicted class 
  Healthy Abnormal 

Actual 
class 

Healthy 109 TP 1 FP 
Inner ring fault 0 FG 110 TN 
Outer ring fault 1 FG 109 TN 

Ball fault 11 FG 99 TN 

Dmax=4.323 

Dmax=0.090 

(d)

(e)

Fig. 13 (continued)

Table 6
Recognition rate of different methods in1500rpm at horizontal measurement point.

Method Recognition rate

Healthy sample Inner fault sample Outer fault sample Ball fault sample

HDD 99.09% 99.09% 100% 99.09%
SVDD on original features 98.18% 28.18% 91.81% 54.55%
SOM on original features 98.18% 29.09% 98.18% 63.64%
SVDD on reconstructed features 99.09% 63.64% 99.09% 88.18%
SOM on reconstructed features 99.09% 67.27% 99.09% 87.27%

Table 5
Recognition rate of different methods in1500rpm at vertical measurement point.

Method Recognition rate

Healthy sample Inner fault sample Outer fault sample Ball fault sample

HDD 98.18% 100% 100% 97.27%
SVDD on original features 99.09% 93.64% 75.45% 51.82%
SOM on original features 99.09% 97.27% 80.00% 60.91%
SVDD on reconstructed features 98.18% 100% 80.91% 77.27%
SOM on reconstructed features 98.18% 100% 99.09% 80.00%
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6.2. Comparison with different feature preprocessing methods

Hyperspherical distance discrimination consists of two parts, the procedure of hyper-spheroidization and distance dis-
crimination analysis. The hyper-spheroidization procedure is essentially a feature transformation method. So it is interesting



Table 7
Recognition rate of different methods in1500rpm at vertical measurement point.

Method Recognition rate

Healthy sample Inner fault sample Outer fault sample Ball fault sample

HDD 99.09% 99.09% 100% 97.27%
SVDD on original features 99.09% 99.09% 98.18% 80.91%
SOM on original features 98.18% 98.18% 97.27% 79.09%
SVDD on reconstructed features 99.09% 100% 99.09% 90.00%
SOM on reconstructed features 99.09% 99.09% 100% 84.55%

Fig. 14. Appearance of tested bearing: (a) outer ring; (b) inner ring; (c) rolling elements.
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to compare hyper-spheroidization with other feature preprocessing methods such as principle component analysis and
normalization.

Here is an example. There are 110 healthy samples and 110 ball fault samples from experiment 1 in 1500 rpm at vertical
measurement point. Such samples are chosen because the recognition rate of ball fault is the lowest, as shown in Table 5. The
randomly selected 50% healthy samples are used for training and all the samples are used for testing. Fig. 19 shows the recei-
ver operating characteristic (ROC) curves of RBF kernel SVDD results (achieved by incremental SVDD method from dd_tools
MATLAB toolboxes [22] for obtaining better performance) and SOM results under different feature preprocessing methods.
All parameters of both methods are selected by cross validation. Note that the principle component analysis is just used for
decorrelation instead of dimensionality reduction. Meanwhile, the results of Linear kernel SVDD is shown as a reference. A
good performance of Linear-SVDD means the space distribution of reconstructed features is indeed a hypersphere, according
to the principle of support vector data description.

It can be found that (1) the proposed hyper-spheroidization performs better than principle component analysis and nor-
malization both on RBF-SVDD and SOM; (2) The performances of RBF-SVDD and SOM on original data are similar to the
results after principle component analysis; (3) The performances of Linear-SVDD, RBF-SVDD and SOM are similar after
hyper-spheroidization. These results are consistent with the conclusion that it is easier to describe a hypersphere than to
describe a hyperellipsoid.

From the space point of view, the decorrelation is essentially a procedure of rotation. Suppose the spatial distribution of
original features is a hyperellipsoid, then the principal axes of such hyperellipse will be parallel to coordinate axes after
decorrelation. As mentioned in Section 4.1.1, the principle of the decorrelation method in this study is essentially the same
as the principle of principal component analysis without consideration of dimensionality reduction. That is, a hyperellipsoid
whose principal axes parallel to coordinate axes is obtained after principal component analysis. However, the spatial



Fig. 15. Morphology of tested bearing: (a) outer ring; (b) magnification of outer ring; (c) inner ring; (d) magnification of inner ring; (e) rolling element; (f)
magnification of rolling element.

348 T. Lin et al. /Mechanical Systems and Signal Processing 109 (2018) 330–351
distribution of rotated feature vectors is still a hyperellipsoid, and this is why the performances of RBF-SVDD and SOM on
original data are similar to the results after principal component analysis. Generally, the PCA method performs well
[17,18] when used for dimensionality reduction. It is because the noise in the data may be removed by dimensionality reduc-
tion while the classification will be difficult if the feature dimension is very high. Hence, only eliminating the correlation of
features contributes little to data description.

The normalization is essentially a procedure of ‘‘stretching or compression”. It stretches or compresses the hyperellipsoid
from the directions of coordinate axes. If the distribution is a hyperellipsoid whose principal axes parallel to coordinate axes,
then the distribution will tend to be a hypersphere after normalization. Otherwise, the distribution is still a hyperellipsoid
after normalization. This is why hyper-spheroidization performs better than normalization. On the other hand, the normal-
ized spatial distribution is sometimes more spherical than the original spatial distribution because the transformed features
are of approximate scale. And this is why using normalization as a preprocessing method can get a better performance
sometimes.

After hyper-spheroidization, even the performance of Linear-SVDD is competitive compare to the performances of RBF-
SVDD and SOM. It implies that a simple data description method is accurate enough for classification in this situation. So the
hyper-spherical distance discrimination (HDD) method combined with the hyper-spheroidization and distance
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Fig. 16. The results of experiment 2: (a) RMS during Step 1; (b) RMS during Step 2; (c) EI during Step 1; (d) EI during Step 2.
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discrimination analysis is proposed. By comparison, HDD is not only performs well in recognition rate, but also with the
advantages of low computational complexity and no need to tuning parameters. Hence the HDD method is able to meet
the requirement of aero-engine rolling bearing on-line monitoring.
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7. Conclusions

A novel method called HDD is proposed for aero-engine rolling bearing fault detection and on-line monitoring in this
paper. HDD converts a complex boundary description problem to a 1-D threshold determination problem. Only calculating
the 2-norm of reconstructed feature can it realize fault detection of rolling bearing. HDD is not only superior to the SVDD and
SOM in recognition rate, but also with the advantages of low computational complexity and no need to tuning parameters.
Therefore, the HDD method is able to meet the requirements of aero-engine rolling bearing fault detection. Especially, it
solves the contradiction of limited computing resources in engineering and the complexity of the model. When recon-
structed features vectors are used as input vectors, the recognition rate of SVDD and SOM are both improved significantly.
It means that the classifier performance is able to be improved by pre-processing of hyper-spheroidization. In addition, the
run-to-failure test of rolling bearing shows that the evaluating indicator obtained by proposed method is able to reflect the
degradation tendency of rolling bearing, and it is also more sensitive to initial fault than RMS. Therefore, the evaluating indi-
cator obtained by proposed method can adaptively use the most effective features for bearing degradation assessment with-
out human intervention.
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