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Based on the SVM’s excellent generalization performance, a new approach is proposed to
extract knowledge rules from Support Vector Clustering (SVC). In this method, the first step
is to choose the features of the sample data by using Genetic Algorithm for improving the
comprehensibility of the knowledge rules. Then the SVC algorithm is adopted to obtain the
Clustering Distribution Matrix of the sample data whose features have been chosen.
Finally, hyper-rectangle rules are constructed using the Clustering Distribution Matrix.
To make the rules more concise, and easier to explain, hyper-rectangle rules are simplified
further by using rules combinations, dimension reduction and interval extension. In addi-
tion, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm is adopted to
resample fault samples in order to solve the serious imbalance problem of samples. The
UCI datasets are used to validate the new method proposed in this paper, the results com-
pared with other rules extraction methods show that the new approach is more effective.
The new method is used to extract knowledge rules for aero-engine oil monitoring expert
system, and the results show that the new method can effectively extract knowledge rules
for expert system, and break through the bottleneck in expert system knowledge dynamic
acquisition.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

At present, knowledge acquisition through data mining
[1,2] occurs mainly through machine learning or statistics.
Correlation analyses [3], artificial neural networks [4],
rough sets [5], and decision trees [6] are extensively em-
ployed for data mining. If data mining is applied to an ex-
pert system and if the knowledge rules are extracted
automatically from real data, then the intelligence level
and knowledge acquisition ability of the expert system will
be greatly improved.

In recent years, the Support Vector Machine (SVM) [7]
has become an emerging classification technology in data
mining. The SVM can approximate any continuous
bounded nonlinear function because of the perfect general-
ization theory and strong nonlinear mapping ability. The
SVM has several advantages over the neural network, such
as better generalization ability, no local minimum prob-
lem, the ability to automatically construct the learning ma-
chine, no dimension curse, and the ability to deal with
small samples. These advantages have caused data mining
technology based on SVM to receive the attention of
researchers worldwide. Furthermore, a number of promis-
ing SVM rule extraction algorithms published to date [8–
14] are not only simple but also broadly applicable. Nunez
et al. [9] introduced a rule extraction approach based on
the SVM, in which K-means clustering is used to obtain
clustering centers, which are then combined with support
vectors (SVs) to define ellipsoid rules. Finally, the ‘‘if-then’’
rules can be obtained when the ellipsoid rules are mapped
to the input space. However, the generated ellipsoid rules
seriously overlap. In addition, the solution quality of K-
means strongly depends on the initial values for the cen-
ters, and it is difficult to control the quantity and quality
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of the obtained rules. In a similar study, Zhang et al. [10]
introduced the hyper-rectangle rule extraction (HRE) algo-
rithm to extract rules from the trained SVM. The authors
used the Support Vector Clustering (SVC) algorithm to find
prototype vectors for each class, and then used those vec-
tors with the SVs to generate hyper-rectangles. A nested
generalized exemplar algorithm is utilized to first con-
struct small hyper-rectangles around the prototypes,
which are then grown incrementally until the stopping cri-
teria based on a user-defined minimum confidence thresh-
old (MCT) or minimum support threshold (MST) are met.
If-then rules are then generated by projecting these hy-
per-rectangles onto coordinate axes. The published results
for this method show that the rules provide good accuracy.
However, all the features are present as antecedents of
these rules. This limits their explanation capability, since
no indication is given about the most important features
for the classification.

Based on the aforementioned limitations, here, a new
method is proposed to extract knowledge rules from SVC.
The first step in this method is to choose the features of
the sample dataset using a Genetic Algorithm (GA) for
improving the comprehensibility of the knowledge rules.
The next step is to map the chosen features of the training
samples into a high-dimensional feature space to get opti-
mal separating hyper-planes and SVs. Finally, the hyper-
rectangles are constructed using the Clustering Distribu-
tion Matrix of the data obtained by the SVC, and the if-then
rules are generated by projecting these hyper-rectangles
onto coordinate axes. In order to make the rules more con-
cise and easier to explain, hyper-rectangle rules are further
simplified using a combination of rules, dimension reduc-
tion, and interval extension. In addition, the SMOTE (Syn-
thetic Minority Over-sampling Technique) algorithm is
adopted to resample fault samples in order to solve the
serious imbalance problem of samples. Experimental re-
sults show that it is easy to control the number and the
support degree of the generated rules; feature selection
and simplification of rules can greatly improve their expla-
nation capability.

Spectral oil diagnosis expert system is the advanced
stage of aero-engine wear fault diagnosis. At present, some
oil monitoring expert systems have been developed, such
as, the advanced rapid analysis system PFALink developed
by the United States Mobil oil company, lubricating oil
analysis expert system Lube Analyst and Atlas developed
by the United States and Canada. But these software only
provides a framework and management system, and the
Fig. 1. Rules extract
users need to develop its core knowledge base and provide
the monitored wear element threshold value. In the intel-
ligent diagnosis expert system, these problems, such as
weak knowledge acquisition, hard knowledge updating
and poor knowledge adaptability, still did not get effective
to be overcome. The expert system knowledge acquisition
is basically by means of the mechanical learning methods
based on the experiences. The knowledge is hard to update
and the rules exist serious problems such as inconsistent,
redundancy, and combination explosion. Therefore, in this
paper, the new method is applied to the knowledge acqui-
sition of aero-engine spectral oil diagnosis expert system.
Experimental results to real dataset show the effectiveness
and the correctness of the new method.

2. Knowledge rules extracting method based on GA_SVC

The rule extraction process includes data preprocessing,
SVC, hyper-rectangle rule extraction and rule simplifica-
tion. The entire rule extraction procedure is shown in
Fig. 1.

2.1. Data preprocessing

2.1.1. Dalancing to unbalance data
In data mining experiments, the datasets are usually as-

sumed to balance distribution, which is the number of var-
ious types of samples is almost the same, while it is almost
non-existent in the real. In many real datasets, the number
of class with different label is unequal. These datasets are
called unbalanced datasets. Usually, the minority class
samples will be taken out as noise so that no rules about
the minority class can be extracted. Therefore, in order to
extract rules of various types of samples completely, and
improve the recognition rate of the rules, the first step is
to preprocess the unbalance data into balance data before
rules extraction.

In this paper, we resample fault samples by using Syn-
thetic Minority Over-sampling Technique (SMOTE) which
is the typical sampling algorithm. SMOTE [15] algorithm
is an over-sampling method put forward by Chawla. In or-
der to make the dataset be equilibrium, the main concept
of the method is to use k neighbor method and linear inter-
polation method to insert new samples according to cer-
tain rules between the two closer samples of minority
class. In Fig. 2, a two dimensional example {X = (x1, x2)} is
enlarged by using SMOTE over-sampling method. It can
be seen from Fig. 2 that the new re-sampling samples focus
ion procedure.
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Fig. 2. SMOTE re-samples results.
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around the original sample, and reflect the sample poten-
tial distribution very well.
2.1.2. Feature selection based on Genetic Algorithm
In this paper, of the feaIy using SMOTE over-sampling

methodIn order to reduce the sample feature dimensions,
improve rules extraction efficiency, and enhance the rules
comprehension, the feature selection is a key step. In this
paper, a feature selection method based on the Genetic
Algorithm (GA) is proposed because of its implicit paral-
lelism and global search ability. The basic principle of fea-
ture selection is to use GA to search an optimal binary
code, each of the code corresponding to a feature selec-
tion result. If the ith bit is 1, the corresponding feature
will be selected, and this feature will appear in the classi-
fier, but if the ith bit is 0, the corresponding feature will
not be selected, and this feature will not appear in the
classifier.

With the problem of the feature selection, the fitness
function is very important, and it is constructed mainly
based on class separability criterion and the feature classi-
fication ability. The effectiveness of the fitness function
will directly determine the search direction and evolution
results of GA. In this paper, the fitness function based on
k-nearest neighbor classification is constructed. The neigh-
bor method is a kind of nonparametric pattern recognition
method, which belongs to supervised learning, and its clas-
sification ability can be used as the characteristic evalua-
tion function.
2.2. Support Vector Clustering (SVC)

SVC is a novel clustering method proposed by Ben-Hur
et al. [16], in which data points are mapped to a high
dimensional feature space by means of a Gaussian kernel,
where we search for the minimal enclosing sphere. When
this sphere is mapped back to the data space, it can be sep-
arated into several components, each enclosing a separate
cluster of points.
2.2.1. Mathematical description of the clustering
Let {xi} # X be a dataset that includes n points, with

X # Rd as the data space. Using a nonlinear transformation
u from xj to a high dimensional feature-space, we look for
the smallest enclosing sphere of radius R. This is described
by the constraints:

kUðxjÞ � ak2
6 R2 8j ð1Þ

where k�k is the Euclidean distance and a is the center of
the sphere. In order to allow some points outside the
sphere, soft constraints are used by adding slack variables
fj, namely:

kUðxjÞ � ak2
6 R2 þ fj ð2Þ

The mathematical descriptions for the above problems are:

min R2 þ C
X

j

fj ð3Þ

s:t:kuðxjÞ � ak2
6 R2 þ fj ð4Þ

fj P 0 ð5Þ

where C is a penalty term. The bigger the C value, the less is
allowed for the emergence of the noise. To solve this prob-
lem, transform into the Wolfe dual form:

max W ¼
X

j

UðxjÞ2bj �
X

i;j

bibjUðxiÞ �UðxjÞ ð6Þ

with the constraints:X
j

bj ¼ 1 ð7Þ

0 6 bj 6 C j ¼ 1;2;3 � � �N ð8Þ

We adopted the SV method and represented the dot prod-
ucts U(xi)U(xj) by an appropriate Mercer kernel K(xi, xj).
We used the following Gaussian kernel:

Kðxi; xjÞ ¼ exp kxi � xjk2
=q2

� �
ð9Þ

The Lagrangian W can then be written as:

W ¼
X

i

Kðxj; xjÞbj �
X

i;j

bibjKðxi; xjÞ ð10Þ

According to Eqs. (7), (8), and (10), Eq. (6) can be written
as:

max W ¼ 1�
X

i;j

bibjKðxi; xjÞ ð11Þ

Namely; min W 0 ¼
X

i;j

bibjKðxixjÞ ð12Þ

St : 0 6 bj 6 C j ¼ 1;2;3 � � �N ð13Þ

Finally, the solution of bj can be obtained.
The distance between a data sample and the center of

the feature space hyper-sphere is computed as:

DðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i;j¼1
bibjKðxi; xjÞ þ Kðxi; xiÞ � 2

XN

j¼1
Kðxj; xiÞbj

r
ð14Þ

The radius of the smallest enclosing hyper-sphere in the
feature space is determined by R = D(xi)|"0 < bi < C.
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Further, the contours that enclose the points in the input
space are defined as the set X = {x|D(x) = R}.

2.2.2. Cluster assignment
The cluster description algorithm does not differentiate

between points that belong to different clusters. To do this,
we used a geometric approach involving D(x), based on the
following observation: given a pair of data points that be-
long to different components (clusters), any path that con-
nects them must exit from the sphere in feature space.
Therefore, such a path contains a segment of points y such
that D(y) > R. This leads to the definition of the adjacency
matrix Aij between the pairs of points xi and xj whose
images lie in or on the sphere in the feature space:

Aij ¼
1 if ; for all y on the line segment connecting xi and xjDðyÞ6R

0 otherwise

�
ð15Þ

Clusters are now defined as the connected components of
the graph made by A. The line segment is checked by sam-
pling a number of points (20 points were used in our
numerical experiments).

Because SVs lie on cluster boundaries that determine
the shape and size of the hyper-sphere in the feature space,
so in this paper, only the SVs are assigned to the cluster
and others are left.

2.2.3. Analysis of SVC parameters
There are two important parameters in the SVC algo-

rithm, one is the scale parameter q of the Gaussian kernel,
(a) q=5 C=0.1          

Fig. 3. Effect of the scale parameter q

(c) C=1 q=10                        

Fig. 4. Effect of the parameter C
and the other is the penalty factor C. The parameter q
determines the number of the clusters and the penalty fac-
tor C can be determined by setting a priori maximum per-
mitted rejection rates of the error on the clusters. We
consider two simulation samples as examples to illustrate
the influence of these two parameters on the clustering
results.

For the first sample (as shown in Fig. 3), when q was
small, there was only one cluster. When q increased, the
clustering boundary fit the data more tightly and splits into
more clusters. For the second sample (as shown in Fig. 4),
when parameter C was larger than 1, all of the samples fit
into the generated cluster including some noise elements
and outliers. When parameter C was equal to 1, there were
two outliers that were excluded from the cluster, and the
cluster fit more tightly to the samples.

In conclusion, the parameter q of the Gaussian kernel
determined the number of clusters (i.e. the number of
the hyper-rectangle rules); and the penalty factor C deter-
mined the size of the clusters (i.e. the size of the hyper-
rectangle rules). The choice of an appropriate parameter
C can avoid the over-fitting of the rules because of the iso-
lated points and noise elements.
2.3. Hyper-rectangle rule

The nature of the hyper-rectangle rule extraction meth-
od based on SVC clustering is based on the principle of
constructing a hyper-rectangle that covers the input space
based on the SVC classification hyper-plane. Each
(b) q=30 C=0.1          

on the number of the clusters.

C=0.1 q=10         (d) 

on cluster compactness.
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hyper- rectangle Hj;Lj is defined by the interval of all its
attributes x1 2 ½xL

1; x
U
1 � \ � � � \ xi 2 ½xL

i ; x
U
i � \ � � � \ xN 2 ½xL

N; x
U
N�,

where Lj is the class label and xL
i and xU

i from the range of
component i of sample x. When Hj;Lj is projected onto coor-
dinate axes, the following if-then rules below are obtained.

Rj;Lj � if x1 2 ½xL
1; x

U
1 � \ � � � \ xi 2 ½xL

i ; x
U
i � \ � � � \ xN

2 ½xL
N; x

U
N � then classLj ð16Þ

Each discovered rule should have a measure of certainty
that assesses the validity of the rule. There are two objec-
tive measures, one is the confidence that acts as the mea-
sure of reliability or accuracy, and it represents the
strength or quality of a rule; the other is the support de-
gree which represents the percentage of data samples that
satisfy the extracted rule. In order to control the number
and the validity of the hyper-rectangles, we defined the
support and the confidence of Hj;Lj as follows:

conf:ðRj;Lj Þ ¼ sample covered by Hj;Lj with class label Lj

sample covered by Hj;Lj

ð17Þ

supp:ðRj;Lj Þ ¼ sample covered by Hj;Lj with class label Lj

sample with class label Lj

ð18Þ

Rules that satisfy both a user-specified minimum confi-
dence threshold (MCT) and minimum support threshold
(MST) are called as the strong association rules, and are con-
sidered as interesting rules. On the contrary, rules with low
support probably represent noises, or exceptional cases.

2.4. Rule-based recognition methods

2.4.1. Distance method
The distance method entails that the test example will

be recognized as the class labeled by the hyper-rectangle
rule that is closest to the test example. Each hyper-rectangle

Hj;Lj with class label Lj is represented by its lower-left corner

H
j;Lj

lower and upper right corner H
j;Lj
upper. The distance between

Hj;Lj and a sample X = (x1, � � �, xN) is defined as follows:

D X;Hj;Lj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
wfi � di X;Hj;Lj

� �� �2
� �s

ð19Þ

where wfi is the weight of the ith feature. In general, the wfi

is equal to 1, and

diðx;Hj;Lj Þ ¼
xi � H

j;Lj

upper;i if xi > H
j;Lj

upper;i

H
j;Lj

lower;i � xi if xi < H
j;Lj

lower;i

0 otherwise

8>><
>>: ð20Þ
H2,1

H1,1

H3,1

Ha,1

Fig. 5. Hyper rectangle co
where H
j;Lj

lower;i is the ith element of H
j;Lj

lower.

2.4.2. Range method
The range method entails that the sample is recognized

directly according to the range of the rules. For each hyper-
rectangle Hj;Lj , its interval is ½xL

j1; x
U
j1� \ � � � \ ½xL

ji; x
U
ji �

\ � � � \ ½xL
jN; x

U
jN�, where xL

ji and xU
ji from the range of the ith

component of the sample x belonging to the jth class. For
the sample X = (x1, � � �, xN);, if x1 2 ½xL

j1; x
U
j1� \ � � � \ xi

2 ½xL
ji; x

U
ji � \ � � � \ xN 2 ½xL

jN; x
U
jN�, then the sample is recognized

as the jth class.

2.5. Rule simplification

In order to make the rules more concise and easier to
explain, the extraction rules should be simplified further
by using such means as rules combination, dimension
reduction and interval extension.

2.5.1. Rules combination
When the distribution of the sample is very complex,

the number of rules will be very large, making them very
difficult to understand. In order to make the rules easier
to explain, the extracted rules should be simplified further
by combining the hyper rectangle rules with closer dis-
tance and smaller supports into rules with bigger support.
In this process, the threshold is used to limit the minimum
confidence of the generated rules. In the process of com-
bining rules, the overlapping degree of two different hyper
rectangles with the same class label is measured from the
area of the two overlapping hyper-rectangles. The bigger
the area, the smaller is the distance.

For example, as shown in Fig. 5, according to the nearest
neighbor strategy, while H2,1 is the nearest neighbor hy-
per-rectangle of H1,1 the two smaller hyper-rectangles
H1,1 and H2,1 are combined into a larger hyper-rectangle
Ha,1, and then Ha,1 is combined with its nearest neighbor
H3,1. This process is repeated until there are no more hy-
per-rectangles that can be combined. In the process of
the rules combinations, if the confidence of every new gen-
erated hyper-rectangles is less than the given minimum
confidence threshold MCT, the combination will be can-
celled. The combination process is shown in Fig. 5.

2.5.2. Rules reduction
For if-then rules, the more the attributes of a rule is, the

more difficult it is to understand. The attributes are se-
lected by using GA, in order to further enhance the com-
prehensibility of the rules, however, another approach is
to use rule reduction, which is done in the following two
steps: interval extension and dimension reduction. entails
conversion of the closed interval of the attribute to an open
interval; dimension reduction entails eliminating one-
H3,1

Ha,1 Hb,1

H3,1

mbination process.
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X1

X3

X2 X2

X3
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(b) Dimension reduction
X3

X2

X1 H1,1

X1

X3

Fig. 6. Hyper-rectangle rules reduction.
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dimensional attributes from the rule antecedent. After rule
reduction, the rule becomes easier to understand and is
more representative. If the confidence of the rules after
reduction is within than the MCT, the reduction process
will be cancelled.

The reduction process of the hyper-rectangale H1,1 in a
three dimensional space is shown in Fig. 6. After interval
extension, the closed interval of attribute x2 is broken,
and the corresponding if-then rules become as follows.

R1;1 : x1 2 ½x1L; x1U � \ x2 > x2L \ x3 2 ½x3L; x3U � ð21Þ

If conf (R1,1) is greater than the MCT value even after elim-
inating the attribute x2 from the rule R1,1, then the rule R1,1

can be re-written as

R1;1 : x1 2 ½x1L; x1U � \ x3 2 ½x3L; x3U � ð22Þ

If the confidence of the new rules is less than the MCT, the
process will be cancelled.

3. Verification analysis based on the UCI data

Six datasets from the UCI machine learning database
were used to verify the effectiveness of our proposed
method. The datasets and their features are listed in Ta-
ble 1, and the optimal feature combinations are also listed
which is obtained by feature selection method based on
the GA. The SVC is the rule extraction method from SVC
without feature selection, and the GA_SVC is the rule
Table 1
Datasets and their features.

Data set Number of training
samples

Number of test
samples

Nu
fe

ACT 126 14 6
Ecoli 302 34 7
Iris 135 15 4
Glass 193 21 9
Hepatitis 139 16 19
Wine 160 18 13
extraction method from SVC with feature selection, as
shown in Table 2. From Table 2, it can be seen clearly that
the recognition rate of rules extracted from GA_SVC meth-
od is much higher than the one from SVC method, which
fully shows the importance of the GA feature selection.

The proposed new method, the C4.5 decision tree meth-
od and the BayesNet method were compared using 10-fold
cross-validation, and the results are presented in Table 3.
From Table 3, it can be seen that the proposed method
had the highest accuracy for Act, Iris and Hepatitis data
sets, which demonstrates its superior generalization
performance.

Iris is a classical pattern classification dataset, which is
often used to evaluate the performance of the new algo-
rithms. The selected features are presented in Table 1
and the MCT and MST were set as 0.8 and 0.1 respectively.
Some hyper-rectangle rules for the Iris dataset with differ-
ent parameters C and q are given in Tables 4–6. We can see
that when q = 10, there are only three rules which have lar-
ger support. With increasing q, more rules are obtained
and they have smaller support. As discussed above, the
smaller the parameter C is, the less support of the rule
has. From Table 5 we can see that support values of the
three rules are respectively reduced to 0.72, 0.63 and 0.67.

Finally, the rules with the highest recognition rate (as
shown in Table 5) are further simplified. The first step is
rule combination; the results of this combination are listed
in Table 7. The next step is the rules reduction, including
mber of
atures

The optimal attributes
combination

Fitness

1 1 0 1 0 1 0.49
1 0 0 0 1 1 0 0.37
0 0 1 1 0.69
0 0 1 1 0 0 0 0 0 0.24
0000010010110110010 0.44
0000010001000 0.71



Table 2
The effect of Genetic Algorithm feature selection on recognition rate.

ACT Ecoli Iris Glass Hepatitis Wine

SVC 0.8643 0.67 0.82 0.4975 0.7599 0.8733
GA_SVC 0.8929 0.7581 0.98 0.5111 0.8667 0.9375

Table 3
Comparison of recognition results.

ACT Ecoli Iris Glass Hepatitis Wine

GA_SVC 0.8929 0.7581 0.98 0.5111 0.8667 0.9375
C4.5 0.8857 0.8423 0.96 0.6589 0.8129 0.9382
BayesNet 0.8571 0.8125 0.9267 0.7477 0.8323 0.9888

Table 8
Rules reduction results.

Hyper-rectangle rules [supp., conf.] According to the
range method

1. If x4 � 0:6 then class 1 [0.91, 1] 0.9867
2. If x4 e [1, 1.6] then class 2 [0.8, 0.97]
3. If x3 P 4:8then class 3 [0.78, 0.97]
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interval extension and dimension reduction, the results are
presented in Table 8. From Tables 7 and 8, we can see that
the combined and reduced rules are more concise and eas-
Table 4
Rules for Iris dataset with C = 0.5 and q = 10.

Hyper-rectangle rules [supp., conf.]

1. If x3 e [1.2, 1.9]x4 e [0.1, 0.5] then class 1 [0.91, 0.97]
2. If x3 e [3.5, 5.0]x4 e [1, 1.8] then class 2 [0.76, 0.94]
3. If x3 e [4.8, 6.3]x4 e [1.5, 2.5] then class 3 [0.78, 0.91]

Table 5
Rules for Iris dataset with C = 0.5 and q = 20.

Hyper-rectangle rules [supp., conf.]

1. If x3 e [1.3, 1.9]x4 e [0.1, 0.6] then class 1 [0.91, 1]
2. If x3 e [3.7, 4.9]x4 e [1, 1.7] then class 2 [0.78, 0.97]
3. If x3 e [4.8, 5.3]x4 e [1.5, 2] then class 3 [0.31, 0.82]
5. If x3 e [5.3, 6.1]x4 e [2.1, 2.5] then class 3 [0.2, 1]

Table 6
Rules for Iris dataset with C = 0.1 and q = 10.

Hyper-rectangle rules [supp., conf.]

1. If x3 e [1.3, 1.7]x4 e [0.1, 0.5] then class 1 [0.72, 0.99]
2. If x3 e [3.5, 4.9]x4 e [1, 1.6] then class 2 [0.63, 1]
3. If x3 e [4.8, 6.0]x4 e [1.5, 2.5] then class 3 [0.67, 1]

Table 7
Rules combination results.

Hyper-rectangle rules [supp., conf.]

1. If x3 e [1.3, 1.9]x4 e [0.1, 0.6] then class 1 [0.91, 1]
2. If x3 e [3.7, 4.9]x4 e [1, 1.7] then class 2 [0.82, 0.97]
3. If x3 e [4.8, 6.1]x4 e [1.5, 2.5] then class 3 [0.78, 0.97]
ier to understand. In addition, the recognition rate can also
increase to the extent.
4. Aero-engine spectral oil diagnosis knowledge rules
extraction

Spectral oil analysis is an important mean of aero-en-
gine wear fault diagnosis, and the expert system is the
effective way to implement the diagnosis. At present, the
expert system knowledge acquisition is mainly based on
human experts experience knowledge, and very difficult
to realize the automatic acquisition. Therefore, the realiza-
According to the
distance method

According to the
range method

0.9533 0.88

According to the
distance method

According to the
range method

0.98 0.8513

According to the
distance method

According to the
range method

0.9733 0.8267

According to the
distance method

According to the
range method

0.98 0.8767
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tion of the automatic acquisition of expert system knowl-
edge is especially important to the expert system fault
diagnosis. The main means to realize knowledge
acquisition is to use data mining method to extract knowl-
edge rules automatically from a large number of data.

In view of this, the new method proposed in this paper
is applied to extract knowledge of actual aero-engine spec-
tral oil data. Taking a military aero-engine spectral oil data
as an example, the dataset contains 237 samples of 10
aero-engines in normal condition and wear condition. A
part of the dataset is listed in Table 9. The 7 kinds of ele-
ments (Fe, Al, Cu, Cr, Ag, Ti and Mg) contents respectively
corresponds to the A1–A7. Wear state F is divided into
three classes: 1—normal; 2—bearing wear and 3—bearing
wear and cage fracture. Wear state F is taken as decisions
attribute D of the example.

In the 237 samples, the number of samples with class
‘‘1’’ is 230, the number of samples with class ‘‘2’’ is only
Table 9
A part of spectral oil data.

Fe(A1) Al(A2) Cu(A3) Cr(A4)

0.50 0.00 0.30 0.00
1.60 0.00 0.60 0.00
2.60 0.00 0.90 0.20
2.30 0.00 0.60 0.10
2.60 0.00 0.60 0.20

15.60 0.50 2.40 1.40
3.20 0.00 0.70 0.30
4.80 0.00 1.50 0.20

23.90 1.80 9.80 1.10

Table 10
Rules for spectral data set from GA_SVC.

Hyper-rectangle rules [su

1. If Fe e [0.2, 5.9]Al e [0, 0.9]Ag e [0, 1] then class 1 [1
2. If Fe e [8.1, 11.8]Al e [0, 0.7]Ag e [0.5, 0.9] then class 2 [0
2. If Fe e [12.7, 15.6]Al e [0.26, 0.6]Ag e [0.5, 0.89] then class 2 [0
3. If Fe e [19.02, 23.9]Al e [0.6, 2.21]Ag e [0.4, 1.8] then class 3 [1

Table 11
Rules combination results.

Hyper-rectangle rules [su

1. If Fe e [0.2, 5.9]Al e [0, 0.9]Ag e [0, 1] then class 1 [1,
2. If Fe e [8.1, 15.6]Al e [0, 0.7]Ag e [0.5, 0.9]then class 2 [0.
3. If Fe e [19.02, 23.9]Al e [0.6, 2.21]Ag e [0.4, 1.8]then class 3 [1,

Table 12
Rules reduction results.

Hyper rectangle rules

1. If Fe <= 5.9 then Normal
2. If Fe >=8.1 and Fe<=15.6 then Axial bearing wear
3. If Fe >= 19.02 then axial bearing wear and cage fracture
five, and the number of samples with class ‘‘3’’ is the least,
only two, therefore the number of fault samples is espe-
cially few, leading to sample serious imbalance. Therefore
the typical SMOTE algorithm of re-sampling algorithms is
used to resample fault samples.

After re-sampling, the numbers of samples with class
‘‘2’’ and ‘‘3’’ are all expanded to 100. The first step is to
select features by using GA, and the code of the optimal
attributes combination is: 1100100, fitness is 0.78, which
means the Fe, Al and Ag three elements are selected to ex-
tract rules. In the SVC training, the penalty factor C and the
Gaussian Kernel parameter q are got by using 10-fold cross
validation method, finally, the optimal C and q are ob-
tained, and they are respectively 0.5 and 2, the MCT and
MST are set 0.9 and 0.1 respectively. Table 10 lists the
extraction rules from GA_SVC and average recognition rate
by 10-fold cross validation with the two recognition meth-
ods discussed in section 1.5. In both cases, the recognition
Ag(A5) Ti(A6) Mg(A7) F(D)

0.10 0.50 2.00 1
0.10 0.60 2.90 1
0.20 0.70 3.50 1
0.20 0.50 4.80 1
0.20 0.60 4.40 1
0.50 1.10 7.20 2
0.20 0.70 5.10 1
0.10 1.00 6.10 1
1.80 1.90 9.30 3

pp., conf.] According to the
distance method

According to the
range method

, 1] 0.975 0.9175
.58, 1]
.21, 1]
, 0.97]

pp., conf.] According to the
distance method

According to the
range method

1] 0.975 0.9175
79, 1]
0.97]

[supp., conf.] According to the range method

[1, 1] 0.97
[0.79, 1]
[1, 0.97]
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rates are all more than 90%, which show that the extracted
rules have very good quality.

The combined rules, the reduced rules and the recogni-
tion rate are listed in Tables 11 and 12 respectively. By
comparing the Tables 10–12, we can see that the combined
and reduced rules have better understand ability and inter-
pretability, and more conducive to engineering application.

5. Conclusions

(1) A new approach of rule extraction from Support Vec-
tor Machine is proposed in this paper. In this
method, the first step is to select the feature of the
sample data by using Genetic Algorithm. Then SVC
algorithm is adopted to get the Clustering Distribu-
tion Matrix of the sample data. Finally, hyper-rect-
angle rules are constructed on the base of the
Clustering Distribution Matrix. In order to make
the rules more concise, easy to be explained,
hyper-rectangle rules are simplified further by using
rules combination, dimension reduction and interval
extension.

(2) The UCI machine datasets are used to test the pro-
posed algorithm and the comparison with the C4.5
decision tree method and the BayesNet method is
carried out. The results show that the proposed
method has better generalization performance.

(3) Aero-engine spectral oil diagnosis expert systems
knowledge acquisition is carried out by using the
proposed method. Taking practical aero-engine
spectral oil data as an example to extract knowledge
rules, verification results show that this method can
well satisfy the engineering need, and can be used as
an effective tool of aero-engine wear fault diagnosis
expert system knowledge rules extraction. It will
effectively improve the intelligent level and knowl-
edge acquisition ability of the expert system.
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