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Abstract

Aiming at the problem of remaining useful life prediction of rolling bearing in aero engine, a data-driven prediction
method based on deep learning and particle filter is proposed. Initially, only the vibration data of rolling bearing in normal
stage are trained by the deep convolution neural network. According to the feature distance between normal and
degraded samples, the evolution features during the whole lifetime are extracted adaptively, and the health index of roll-
ing bearing is constructed. Then, the alarm and failure threshold are determined by unsupervised clustering algorithm.
Combined with the extracted feature, remaining useful life of rolling bearing is tracked and predicted by particle filter
algorithm based on four parameter exponential model. Finally, the effectiveness of the proposed method is verified by
three groups of whole lifetime test data of rolling bearings. Results show that the degradation feature extracted by deep
learning method has higher prediction accuracy of 2.19%, 0.93%, and 1.43% respectively than RMS values, and has more
stable performance and less influenced by the number of particles or resampling methods, which can better reflect the
evolution trend of rolling bearing than the traditional feature.
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indicators can precisely reflect the degradation trend of
bearings, greatly improve the performance of the RUL
prediction model. The quality of feature extraction
directly determines the results of prediction.

Introduction

As an important supporting component, rolling bear-
ing has a significant impact on the service life, safety
and reliability of aeroengine. Evaluating the reliability
of rolling bearing, perceiving the degradation and accu-
rately predicting its remaining service life can provide
evidence for making the preventive maintenance deci-
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sion,! reduce maintenance costs and downtime, and
improve the safety guarantee of aeroengine.

The remaining useful life (RUL) prediction of roll-
ing bearing generally includes four stages: data acquisi-
tion, construction of health indicators (HIs), division of
health stages (HSs), and prediction of remaining life.”
Among them, the construction of health indicators
plays an important role. The selection of reasonable
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Aiming at the construction of health indicators
for the prediction of RUL of rolling bearings, scholars
have conducted many related researches. The time-
domain and frequency-domain characteristics of
bearings, such as root mean square (RMS) or peak,’
wavelet coefficients,* Hilbert spectrum,5 etc., are the
most commonly used characteristic indexes in bearing
RUL estimation. In addition, some researches con-
structed new health indicators according to the statisti-
cal characteristics of bearing fault signals. For example,
Kumar et al.® obtained the degradation trend of bear-
ing through a variety of entropy features, and selected
the degradation features based on the mixed metric
health indicators; Kong and Yang’ characterized the
signal energy by the mean absolute extreme value of
the vibration signal of rolling bearing, and combined
with its root mean square (RMS-MAVE) as the degra-
dation characteristic index. Other studies construct
health indicators by fusing multiple physical indicators
or multiple sensor signals. For example, Zhao et al.®
constructed high-dimensional features through multi-
scale time-frequency representation (TFR) obtained by
S-transform and Gaussian pyramid, and then com-
bined with principal component analysis (PCA) and
linear discriminant analysis (LDA) for two-step super-
vised dimensionality reduction. Wang et al.” estimated
the degradation by calculating the Mahala Nobis dis-
tance between multiple statistics of the bearing and the
health stage through time-domain feature fusion, and
combined with Kalman filter to predict the remaining
life of the bearing. However, the health indicators used
in the above researches are still traditional manual fea-
tures based on time domain or frequency domain,
which has certain requirements for professional skills
and knowledge reserve, and can only reflect some uni-
lateral characteristics of bearing vibration signal.
Therefore, they have specific limitations in the intelli-
gent and sufficient extraction of features and the com-
prehensive reflection of the bearing deterioration trend.

Deep learning method has great advantages in fea-
ture adaptive extraction, which has been widely con-
cerned and has become a hot research direction in
recent years.'® The following convolution neural net-
work (CNN) method, with its unique advantages in
large-scale data feature extraction, has been taken gen-
eral attention and gains meaningful achievements. The
fundamental thought of CNN is to enable the network
acquiring the ability of learning spatial hierarchical
structure of patterns and has translation invariance
through convolution and pooling operations.'! The
deep CNN network (DCNN) developed on the basis of
CNN has more powerful learning ability than the shal-
low network, which is widely applied into pattern rec-
ognition, fault diagnosis, and other fields.

Despite its popularity and numerous applications in
RUL estimation of bearing, deep learning has still

certain limitation on the number of samples. A large
number of degradation and failure samples is needed in
the training of deep model, which is difficult to obtain
in practice. Moreover, deep learning method is highly
dependent on historical data, and its stability remains
further discussion. The vibration signal of rolling bear-
ing has strong non-stationarity,'>'* which poses a cer-
tain challenge to the performance of deep model.

Bayesian filtering is proposed to resolve the limita-
tion of prediction stability, and the particle filter (PF)
algorithm developed on this basis has been widely
used."* The PF method can dynamically adjust the
model parameters under non-stationary conditions by
using the optimal Bayesian estimation and Monte
Carlo algorithm, realize multi-step advance prediction
with high stability, which is quite appropriate for the
prediction of nonlinear and non-Gaussian signals.

In view of the present situation, the deep learning
method is combined with particle filter in this paper to
estimate the remaining useful life of rolling bearing. By
using the strong feature extraction ability of deep learn-
ing, a deep convolution neural network (DCNN) is
developed to adaptively extract the health indicators of
rolling bearings, which retains the essential characteris-
tics of bearing degradation. Combined with the unique
advantages of particle filter algorithm in long-term pre-
diction of nonlinear non-Gaussian signals, the tracking
prediction of the remaining life of rolling bearings is
realized. The whole lifetime vibration data based on
bearing fatigue testing machine is acquired to verify the
effectiveness of the proposed model.

This innovative of this paper is mainly reflected in
the following aspects:

1. Only samples on normal stage are trained to
develop the model, and the characteristic dis-
tance between normal and degradation samples
is extracted by the model and described as the
bearing damage evolution stage, which is more
in line with the reality of the scarcity of fault
samples.

2. Aiming at the problem that the traditional time
or frequency characteristics can hardly reflect
the essential characteristics of bearing degrada-
tion comprehensively and intelligently, an effi-
cient deep learning model is developed to
construct the degradation index adaptively, and
the particle filter algorithm is introduced to
solve the problem of huge distribution difference
between train and test datasets and improve pre-
diction stability.

3. The degeneration and failure thresholds of bear-
ing are often vaguely defined by human observa-
tion.'> In this paper, the damage evolution stage
is adaptively divided by unsupervised learning,
which is more effective and convenient.
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Figure I. Prediction process of residual life of rolling bearing
based on deep learning and particle filter.

The residual life prediction process of rolling bearing
based on deep learning and particle filter proposed in
this paper is shown in Figure 1.

Adaptive extraction of new deterioration
index of rolling bearing based on vibration
monitoring data

Vibration monitoring data of whole lifetime fatigue
test of rolling bearing

The experimental method is adopted in this paper to
obtain the real whole lifetime fatigue vibration moni-
toring data of rolling bearing. The test equipment
includes bearing life enhancement test machine (ABLT-
1A, Hangzhou Bearing Test and Research Center Co.,
Ltd, China), acceleration sensor (AI002, Yangzhou
Jingming Technology Co., Ltd, China), dynamic signal
test and analysis system (JM5937, Yangzhou Jingming
Technology Co., Ltd, China), etc. The bearing life
enhancement test machine is mainly used for rolling
bearing fatigue life accelerating test, the external struc-
ture, and sensor placement of which are shown in
Figure 2.

The bearings used in the test are deep groove ball
bearings (HRB 6206, Harbin Bearing Manufacturing
Co., Ltd, China). The appearance and corresponding
parameters of the bearing are shown in Figure 3(a) and
Table 1. The bearings were used for accelerated fatigue
test, which means the test was accelerated by increasing

radial load (6.25kN of each bearing) and rotating
speed to shorten the bearing life. The test was carried
out twice, and finally two failed rolling bearings were
obtained. As shown in Figure 3(b) and (c), the inner
race fault occurred in #1 bearing, and the mixed fault
of inner race and ball occurred in #2 bearing. Relevant
test parameters are shown in Table 2.

After twice tests of the same type bearing, 300 and
650 data files are obtained respectively. Each file con-
tains the vibration signal of the bearing at a certain
time step, and all files contain the vary trend of the
bearing whole life stage from its normal operation to
the complete failure. Figure 4 shows the comparison of
vibration signals of #1 bearing in different degradation
stages. It can be seen from the figure that the amplitude
of bearing acceleration increases continuously from
normal to the final failure stage, which has obvious
evolution progress of characteristics.

Extraction of rolling bearing deterioration index
based on deep convolution neural network

Deep convolution neural network model. Convolution
neural network is a kind of multi-layer perceptron net-
work that uses the convolution of weight sharing, which
is capable of digging more information by increasing
the depth of the network.'® As one of the most com-
monly used methods in deep learning, compared with
other neural networks, the greatest advantage of deep
convolution neural network is that it can automatically
learn more abstract features from data, and calculate
the features for classification or regression. The para-
meters that need to be updated in the process of CNN
network propagation include input value x;, weight
value w;, bias b, and convolution kernel, etc. Activation
functions such as ReLLU, sigmoid, and tanh are used to
introduce nonlinearity into neural networks. The con-
volution operation process is:

y_,-=f<iw,-jxl-+b,-> 0

i=1

Where x; is the input signal, y; is the output signal,
wj; 18 the weight of the neuron j connected to the input
signal x;, and b; is bias. f(-) is the activation function,
which used in this paper is ReLU:

f) = max(0,) ()

The internal transmission structure of neural net-
work unit is shown in Figure 5.

0, Xfi=w*X + b; * f; w; pw; p i x; y; :7\/%2%5 +B
wx; 02 e By bF X1 Yk = ofx* 1 + PAQ: 2]

The construction of each layer of the network has a
great impact on the bearing degradation features
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Figure 2. lllustration of bearing life enhancement testing machine: (a) ABLT-1A bearing test machine and (b) sensor placement.

Table I. Main parameters of HRB 6206 deep groove ball bearing.

Bore diameter Outer diameter Width Diameter of balls Pitch diameter Number of balls Contact angle
30mm 62 mm 16 mm 9.5mm 46 mm 9 0°

Table 2. Relevant parameters of the test.

Type of Test Sampling Sampling Rotating Save interval Preset Eventually

bearing duration rate time speed of data defect failure type

HRB 30h 32 kHz 2s 11,500 r/min 6 min No Inner race fault
6206#1

HRB 32.5h 50 kHz I's 11,500 r/min 3 min No Mixed fault of inner
620642 race and ball

(a)

(b)

(©)

Figure 3. Appearance comparison of HRB 6206 rolling bearing before and after the test: (a) normal, (b) inner race fault, and

(c) inner race and ball mixed fault.

extraction. A deeper model means better nonlinear
expression ability, which can learn more complex trans-
formations, thus can fit more complex feature inputs.
However, network with excessive depth may lead to

gradient instability, which degrades the network and
reduces the performance of the model. In order to
determine the most appropriate network construction,
this paper takes a convolution-pooling-activation layer
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Figure 4. Amplitude of bearing acceleration signals under different states (6206#1): (a) normal state (at the 100th time step),
(b) degenerate state (at the 250th time step), and (c) failure state (at the 290th time step).
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as the basic nonlinear transformation module, by gra- Group number of convolution-pooling-activation layer

dually deepening the module, training time, and the
loss of the network in the verification set are recorded,
according to which the best combination is selected.
Based on the two bearing whole lifetime data sets, the
influence of different nonlinear module groups on net-
work loss and training speed are shown in Figure 6.

As can be seen from the figure that, with the
convolution-pooling-activation layer group increases,

Figure 6. Effect of convolution-pooling-activation layers group
number on network performance.

the loss of the network on the verification set decreases
significantly and reaching the lowest at the three
groups. After that, with the increase of network depth,
the gradient instability leads to over fitting, which
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Table 3. Parameters of CNN network.

Structure  Input layer Pl Cl P2 C2 P3 C3 Fl Output
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Figure 7. Structure of CNN network.

makes the loss of the network increases gradually, and
the complexity of the network leads to the obvious
increase of training time. Therefore, this paper selects
three groups of nonlinear modules to form the main
part of the network, that is, to develop a deep convolu-
tion network model which is composed of input layer,
three convolution layers, three pooling layers, three
ReLU layers, dropout layer (p = 0.2), BN layer, full
connection layer, and regression layer. Specific para-
meters inside the network are determined through vari-
ables control and comparative analysis, namely, the
parameters are selected to minimize the network train-
ing loss. The CNN network structure is shown in
Figure 7. The corresponding network parameters are
shown in Table 3.

The whole lifetime of rolling bearing is divided into
three stages: normal stage, degradation stage, and fail-
ure stage. Before using particle filter to predict the
remaining useful life, it is indispensable to extract indi-
cators that can reflect the evolution stage of bearing.
Deep learning method can adaptively extract the deep
features of samples through supervised learning and
eliminate redundant features without prior experience,
which it is widely used in the field of feature
engineering.

Relying on the powerful feature extraction ability of
deep learning, this paper proposes a new degradation
index extraction method of rolling bearing based on
deep convolution neural network. By developing a deep

convolution neural network model, the samples in the
normal stage of rolling bearing are training under
supervision, and then the whole lifetime data are input
into the well-trained model successively, and finally the
whole bearing deterioration feature corresponding to
each time point is obtained. Theoretically, with the fail-
ure evolution of bearing, the difference between its fea-
ture value and normal value will increase. In this paper,
the corresponding exponential model is developed by
the characteristic distance between normal and abnor-
mal samples, and the residual life is estimated by parti-
cle filter method.

Taking 6206#1 bearing whole lifetime data as an
example, the process of extracting new deterioration
index of rolling bearing based on deep CNN can be
divided into four steps:

Step 1: The acceleration signals of rolling bearing
from normal stage to failure are acquired every
6min, and finally 300 time point samples in total are
obtained. Each time point is composed of 65,536
vibration points.

Step 2: The normal stage data is selected according
to the variation characteristics of bearing vibration
value, then it is labeled and divided into training set
and test set. The first 50 time points in the normal
stage are chosen as training set, each of which is
divided into 32 parts and converted into a data
matrix with shape 64 X 32 for CNN training, which
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are pixels with different gray levels according to the
value of the signal data. In order to facilitate train-
ing, the label step size is normalized at 50 time
points, namely, the step size is set to 0.02, represent-
ing the subtle feature changes of bearing damage in
the normal stage.

Step 3: The label step size is set to 0.02 according to
the normalization of 50 time points, representing the
subtle feature changes in the process of bearing dam-
age evolution in normal stage.

Step 4: The model with well-trained parameters is
saved, and the samples at all time points from nor-
mal to failure are input into the model. Each sample
x returns a characteristic value y. Finally, 300 char-
acteristic values are obtained corresponding to the
bearing evolution state at 300 time points. The
acquisition process of evolution index y is shown in
Figure 8.

Feature extraction results. The CNN models are trained
based on the normal stage data of 6206#1 and 620642
separately according to the above theory, among which
the #1 data convergence process is shown in Figure 9.
The root-mean-square-error values on the final training
set and test set of the model are 0.055 and 0.061

Figure 10. Evolution trend of 6206#| bearing whole life time
of CNN extracted feature.

respectively, which are far less than its step size 0.2.
The result proves that the network can effectively
extract the deterioration characteristics of bearings.
The whole lifetime data of 6206#1 bearing under 300
time points are input into the well-trained model in
sequence, and the change of CNN extracted values cor-
responding to 300 time points are extracted and shown
in Figure 10. As can be seen from the figure that, the
values begin to rise significantly when the bearing enters
the degradation period, and fluctuate violently in a high
range at the stage of failure, which proves that the
change of CNN extracted features with time can con-
vincingly reflect the degradation trend of the bearing.

Estimation of rolling bearing RUL based
on particle filter and new deterioration
index

The process of particle filter algorithm

Particle filter is an approximate Bayesian filtering algo-
rithm based on Monte Carlo simulation. The main con-
cept of PF is to approximate the probability density
function (PDF) of the system random variables by dis-
crete random sampling points, and replace the integral
operation with the average value of sample to obtain
the minimum variance estimation of the state. Based
on Bayesian theory and sequential importance
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sampling (SIS) algorithm, particle filter shows signifi-
cant advantages in model parameter estimation of non-
linear and non-Gaussian systems, and has been widely
used in the field of life prediction, such as residual life
prediction of lithium battery,'!® crack propagation
prediction of planetary gear system,'” health monitor-
ing of tensegrity,”” etc

The basic process of particle filter algorithm is as
follows:

Assuming that the system satisfies the relationship
between state x; and observed value z; under discrete
time series #;:

z = hi(xx, vi) (3)

where /% is the observation function of the system, vy is
the observation noise, and the process of particle filter
is as follows:

(1) Initialization of particle set. The particle swarm

()

ability distribution p(xp) when k£ = 0, and the

is generated by using a priori prob-

particle weight wé’j =1/N;
(2) Sequence importance sampling. Sample the
Y
particle {x,({')};l in the importance distribu-

1
tion function at time k, and the particle set at
this time is:

N
(i} = {0} (4)

After obtaining the observation value z; at time £,
the importance weight estimation value can be obtained:

CNPRGING
; ; p(zklx w0 x|

ot = of PO ®
|‘xk ]’Zlik)

The particle weight is normalized:

(O]

o = i — (6)

> o

i=1

(3) Resampling. By resampling the particles and
probability density function represented by cor-
responding weights, the particles with smaller
weights are reduced and those with larger
weights are copied to obtain a new particle set

N
{xg) } v and all particles have the same
=

weight 1/N.
(4) The mean value of resampled particles is used for
state estimation, as shown in the equation (9).

. () ()
_ i) ~(i
x(e)v]t{ X0 @ (7)
i=1

Where xo.; is the state variable at time O : k, z.4 is the
observed value at time k, p(xy) is the initial probability
density function, q(xx|xox—1,z14) is the importance
function, p(x|x¢—1) is the probability density value of
system state transition; p(zi|x;) refers to the value of
the observed likelihood probability density of the state
in the system.

Determination of degradation threshold and failure
threshold

Alarm threshold and failure threshold are critical fac-
tors in the RUL prediction of rolling bearing. They are
always determined by manual observation in traditional
mind which lack of scientific basis and not conducive to
the adaptive intelligent diagnosis of rolling bearing.
Therefore, a k-means clustering method is proposed in
this paper to automatically divide the evolution stage of
rolling bearing, and the ordinate corresponding to the
starting point of each class is taken as the end threshold
of the previous stage.

The k-means clustering is an efficient unsupervised
learning algorithm, which divides data into various
regions by iterative solution, and the distance between
each region is used as the standard of similarity mea-
sure. The solution objective is to minimize the sum of
distances, that is:

manZI\x—mll (8)

i=1xeC;

Where x is the feature value, C; is the cluster parti-
tion, w, is the centroid of C;, of which the expression is,

1

ici ¥

M =
x€C;

Different deterioration degrees of rolling bearing
have different meanings for the actual evolution moni-
toring and maintenance decision, thus it is necessary to
divide the fault stage in detail. In this paper, the cluster-
ing of rolling bearing evolution stage is set as four cate-
gories, and the Euclidean distance judgment criterion is
adopted. Finally, the evolution stages division of the
two groups of rolling bearings based on RMS and CNN
feature are obtained, as shown in Figures 11 and 12.

As can be seen from Figures 11 and 12, the k-means
clustering method can adaptively divide the evolution
characteristics of rolling bearing into four stages: nor-
mal, early and late degradation, and failure based on
the unsupervised data-driven method. In this paper, the
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Figure 11. Evolution stages division of RMS and CNN
extracted feature of HRB 6206# | bearing after k-means
clustering.

Figure 12. Evolution stages division of RMS and CNN
extracted feature of HRB 6206#2 bearing after k-means
clustering.

Table 4. The degradation and failure thresholds of whole lifetime evolution data of HRB6206 bearing determined by k-means

clustering algorithm.

Data set 6206#1 620642

Feature category RMS CNN RMS CNN
Degradation starting point 228 227 540 536
Degradation threshold 2.063 0.349 8.496 0.970
Failure starting point 268 267 582 638
Failure threshold 4.743 1.287 17.86 3.209

first points of different colors are set as the starting
point of this evolution stage, and the starting point of
degradation stage and failure stage based on CNN
characteristics are obtained, as shown by the dotted
line in figures above. The corresponding feature values
under those times are the degradation threshold and
failure threshold of rolling bearing respectively.

By the comparisons of Figures 11 and 12, it can be
seen that compared with RMS, the CNN extracted fea-
tures have fewer misjudgment points in different stages
and have higher prediction accuracy. In particular, in
Figure 12, the judgment between degradation stage and
failure stage based on RMS is quite vague. In contrast,
CNN has a clearer evolution trend.

According to the clustering results, the degradation
threshold and failure threshold of two groups of rolling
bearing data are extracted, as shown in Table 4. It can
also be seen from the table that the feature extracted by
CNN is earlier than RMS in judging degradation and
failure, which proves that this method can find faults
earlier and is of great significance for early diagnosis of
bearing damage.

Method verification based on whole lifetime test of
rolling bearing

Assuming that the characteristic value of the whole life-
time vibration signal of the rolling bearing conforms to
the equation: y = a X €7 + ¢ X e, where T is the time
step, a, b, c,d contains noise which is proposed to be
Gaussian white noise, and the state vector of the pre-
diction model is:

xX(T) = [a(T), b(T), «(T), d(T)] (10)

The state equation is:

a(T +1)=a(T) + wu(T),w,~N(0, oy)
b(T + 1) = b(t) + Wb(T), Wb"“N(O, O'b)
o(T+1)=cT) + wo(T),w.~N(, a;)
d(T + 1) = d(T) + Wd(T),Wd"“N(O, O'd)

(11)

The observation equation is:

WT) = a(T) X DT+ o) x DT

(12)
+ (1), W(T)~N(0,0,)
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The process of bearing residual lifetime prediction
based on particle filter algorithm is as follows:

(1) The acceleration signal of rolling bearing is
acquainted, and the characteristic value reflect-
ing the bearing state is extracted by convolu-
tion neural network;

(2) Set the alarm threshold and failure threshold.
When the characteristic value reaches the alarm
threshold at time 7, it is marked as the begin-
ning of degradation, and 7T is the starting time
of the RUL prediction of the bearing. When
the characteristic value reaches the failure
threshold, the bearing is judged as failure and
the prediction is ended;

(3) A four-parameter-exponential model is devel-
oped, and the initial parameters ayg, by, cg, dy of
the model are obtained by fitting the previous n
characteristic data before degradation by least
square fitting;

(4) The particle filter algorithm is used to predict
the characteristic value at time 7 + 1 forward
and compare it with the failure threshold. If it
is less than the failure threshold, continue to
predict the characteristic value at time 7 + 2
until it is over the threshold, then stop the pre-
diction and record the time as 7,, and predict
the RUL = T, — T at this time;

(5) Continue to collect the vibration signal, extract
the characteristic value at time 7 + 1, also take
the previous n characteristic data at that time,
and repeat steps (3) and (4) to obtain the RUL
attime 7 + 1;

(6) When the extracted characteristic value (also
called observed value) exceeds the given failure
threshold, the prediction algorithm terminates,
and the predicted rolling bearing RUL curve
from initial degradation to complete failure is
obtained. The predicted RUL is compared with
the real RUL to obtain the error value of PF
tracking prediction.

The error of bearing RUL prediction can be
expressed by mean absolute error (MAE) and root
mean square error (RMSE), and their expressions are
as follows:

MAE = %Z (RUL, (i) — RUL,(i)) (13)

i=1

RMSE = %Z (RUL,(i) — RUL,(i))? (14)

i=1

Where RUL,, and RUL, are the predicted RUL and
real RUL value of rolling bearing respectively, m is the

number of predicted time step points. In order to prove
the advantages of CNN extracted feature in rolling
bearing RUL prediction, it is compared with the root
mean square (RMS) value which is commonly used in
bearing RUL prediction.”’*> The RMS and CNN
extracted features of the whole lifetime vibration data
of rolling bearing are extracted respectively, then the
two values are used to track and predict bearing RUL
by the particle filter method, and finally the prediction
results are compared. The discrete expression of

RMS is:
XRMS = fo/n
V=

The physical meaning of features extracted by CNN
can be explained as follows: The CNN extracted feature
corresponds to the normalized label during training,
that is, the time step of bearing damage evolution. Since
the evolution is positively correlated with the damage
situation of the bearing, the CNN extracted feature can
also be interpreted as the damage degree of the bearing,
which mapped to the specific size of the damage. When
the extent of damage reaches a certain degree, namely
the failure threshold, the bearing can be determined as
failure.

As for the 6206#1 bearing, the particle filter algo-
rithm is used to track and estimate the observed feature
values between time steps 200-220. The 227th point
and the 267th point are determined as the starting
point of degradation and failure based on CNN feature
respectively by clustering method, and the correspond-
ing feature values under those times are set as degrada-
tion threshold and failure threshold respectively. In this
paper, the change of feature value is gradually pre-
dicted from the 227th time step until the failure thresh-
old is reached, and the RULs under 41 time steps are
finally obtained. The RMS value is predicted under the
same period as a contrast. The resampling method is
set as residual resampling, and the number of particles
is 1000.

The tracking prediction process of CNN extracted
feature at the 238th time step is shown in Figure 13. It
can be seen from the figure that the predicted value
and the observed value have a high degree of coinci-
dence, and the distance of intersections between them
and the failure threshold is close, which proves high
accuracy of prediction. The RUL prediction error of
the step is 2 X 6min, which is within an acceptable
range compared with the 30 h total lifetime of the fati-
gue strengthening test of rolling bearing.

As for the 6206#2 bearing, the observed feature val-
ues are tracked and estimated by PF algorithm between
time steps 500-535. The changes of CNN feature and
RMS in the early degradation stage are predicted

(15)
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Figure 13. Tracking prediction of CNN feature at 238th time
step (6206#1).
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Figure 14. Tracking prediction of CNN feature at 558th time
step (6206#2).
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Figure 15. RUL predicted results based on particle filter: (a) HRB 6206#1 and (b) HRB 6206#2.

gradually from the 536th point, and finally the RULs
under 34 time steps are obtained. Among them, the
CNN feature prediction results at the 558th time step
are shown in Figure 14. The RUL prediction error of
the step is 3 X 3 min, which also means high prediction
accuracy.

According to the above method, the bearing RULs
within the degradation range are tracked and predicted
step by step by particle filter, and the two groups of
RUL prediction results based on the RMS and CNN
extracted feature are obtained respectively, as shown in
Figure 15.

It can be seen from the figures that the prediction
result based on CNN extracted feature is closer to the
real value than those based on RMS. Especially for #2
bearing, the curve of RMS fluctuates violently in the
degradation stage, which produces large errors in the

updating process of the model, resulting in a decline of
prediction accuracy. On the contrary, the method based
on CNN feature has a relatively stable change trend,
which can better adapt to the adjustment of model
parameters, leading to better prediction results than
RMS.

RUL prediction based on ZA-21 |5 bearing

In order to examine the ability of CNN model to
extract the whole lifetime characteristics of rolling bear-
ings under diverse bearing models and working condi-
tions, the whole lifetime vibration data of rolling
bearings in IMS (Intelligent Maintenance Systems)
laboratory of University of Cincinnati (UC, USA) are
used for comparative study. The test rig is shown in
Figure 15(a). Rexnord ZA-2115 rolling bearings are
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(b)

Figure 16. Whole life time test of Rexnord ZA-21 |5 rolling bearing: (a) bearing test rig and (b) outer race failure of ZA-2115

bearing.
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of ZA-2115 bearing after k-means clustering.

used in the exceeding designed lifetime test, and PCB
353b33 acceleration sensors are used for monitoring.
The test lasts 164 h, the data storage time is 10 min, and
the sampling frequency is 20 kHz. Outer race failure of
one of the bearings occurred at the end of the test, as
shown in Figure 16(b).

The CNN feature and RMS under 984 time steps
are extracted to track the degradation process of the
bearing after k-means clustering method, as shown in
Figure 17.

According to the clustering results, the degradation
threshold and failure threshold of ZA-2115 rolling bear-
ing data are determined, as shown in Table 5.

It can be seen from Figure 16 that the RMS and
CNN feature still have similar upward trend in the
whole life stage. Significantly, the two evolution curves
began to show slow upward trends at about the 550th
point, indicating slight degradation of bearing which is
captured exactly by CNN. The starting point of failure
threshold determined by k-means clustering based on

Figure 18. RUL predicted results of ZA-2115 bearing.

Table 5. The degradation and failure thresholds of whole
lifetime evolution data of ZA-2115 bearing determined by
k-means clustering algorithm.

Data set ZA-2115

Feature category RMS CNN
Degradation starting point 609 555
Degradation threshold 0.095 0.055
Failure starting point 968 967
Failure threshold 0.344 0.235

CNN feature is 56 time steps earlier than RMS and
closer to the real inflection point, which is proved that
the CNN method can find faults earlier and predict the
RUL more accurately.

Based on the above thresholds, PF step-by-step
tracking is carried out for RUL prediction within the
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Table 6. Comparison of RUL prediction accuracies by particle filter based on RMS and CNN feature.

Feature extraction method HRB 6206#1 HRB 6206#2 Rexnord ZA-2115
RMS CNN RMS CNN RMS CNN

RMSE of fitting curve 0.2372 0.1053 0.9624 0.2259 0.0234 0.0177
RMSE of prediction results 14.25 7.45 12.78 6.73 34.52 20.49
Normalized RMSE of prediction results 4.67% 2.48% 1.97% 1.04% 3.51% 2.08%
Table 7. Comparison of normalized MAE by particle filter based on RMS (6206#1).
Number of particles 200 500 1000 2000 5000 10000
Polynomial resampling 5.042% 5.124% 4.503% 5.550% 5.422% 5.618%
Random resampling 5.327% 5.016% 4.453% 5251% 5.764% 5.586%
Residual resampling 5.010% 4.921% 4.364% 5.289% 5.460% 5.390%
System resampling 5.054% 4.763% 4.408% 4.693% 4.693% 4.693%
early degradation range, and RUL trend prediction filter and error accumulation. In addition, the
results based on RMS and CNN extracted features are characteristic ascending trend of ZA-2115 is
obtained respectively, as shown in Figure 18. steeper, which has an adverse impact on the

Comparing the prediction results of ZA-2115 bear- updating and prediction of index model
ing and 6206 bearings, it is found that the average error parameters.
and error fluctuation of ZA-2115 based on CNN are (2) As for the whole life test data of HRB 6206

significantly greater than those of 6206. The reason is
that the prediction stage (71 time steps X 10min) of
ZA-2115 is relatively larger than 6206#1 (41 time steps
X 6min) and 6206#2 (35 time steps X 3min), which
has more iterations by particle filter and results in error
accumulation. In addition, the rising trend of values in
the prediction stage of 6206 bearings are more stable
than that of ZA-2115, which are more conducive to the
updating of exponential model parameters.

Comparative analysis of test results

Comparative analysis of three groups of experimental data. In
order to specifically compare the RUL prediction abil-
ity of the features of different characteristics in different
test data, the RMSE of the least squares fitting curve,
the RMSE of the prediction results, and the RMSE of
the prediction results normalized by whole lifetime are
compared, as shown in Table 6.
As can be seen from the above comparison:

(1) For three whole life experimental data sets, the
bearing degradation characteristics extracted
by CNN have higher prediction accuracy of
remaining useful life than RMS. Among them,
the prediction accuracy of HRB 6206 series
bearing data set is higher than that of Rexnord
ZA-2115 bearing data set. The reason is that
the latter has more and larger prediction time
steps, leading to more iterations by particle

series bearings, the RMSE of the model fitting
and RUL prediction results of CNN extracted
features are significantly lower than the that of
RMS, which proves the effectiveness of the
CNN feature in the RUL prediction of bearing
based on particle filter. Due to the various
types of faults and other effects such as work-
ing conditions and noise, #1 bearing data char-
acteristic curve is more stable, leading to higher
prediction accuracy than that of #2 bearing.

In order to investigate the influence of parameters
on particle filter algorithm and the stability of the
model, this paper compares the effects of diverse
resampling methods on the accuracy of the model
under distinct particle numbers. The comparison of
RUL tracking prediction results based on CNN feature
and RMS of 6206#1 bearing data are shown in Tables
7 and 8.

As can be seen from Tables 7 and 8:

(1)  When the number of particles is 1000, the aver-
age errors obtained by particle filter using
RMS and CNN feature are both relatively low,
and the error of system resampling is lower
than that of other resampling methods;

Compared with RMS, all the errors of the bear-
ing damage evolution characteristics extracted
by CNN are lower than RMS after particle fil-
ter tracking and prediction, and the accuracies

2
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Table 8. Comparison of normalized MAE by particle filter based on CNN feature (6206#1).

Number of particles 200 500 1000 2000 5000 10000
Polynomial resampling 2.241% 2.284% 2.216% 2.203% 2.235% 2.216%
Random resampling 2.297% 2.216% 2.210% 2.266% 2.253% 2.247%
Residual resampling 2.415% 2.210% 2.197% 2.266% 2.241% 2.259%
System resampling 2.235% 2.197% 2.129% 2.179% 2.203% 2.236%

are less influenced by the number of particles

or resampling method, which proves better per- Real degradation trend

formance of CNN method. ag =L S Degradation

Trained data stage
% 1.54

Comparative analysis with single deep learning model. For °
the CNN and PF combined model, CNN plays the role 5 104
of degradation feature extraction and dimension reduc- £
tion, while PF model is responsible for RUL prediction < 054
based on degradation features. However, CNN itself A AN A AN AR AN i
has the ability of regression prediction and is also oo A ey 5 o T i

widely used in the field of bearing residual life predic-
tion,” while those trainings are usually based on both
normal and abnormal data. In order to explore the dif-
ference between single CNN regression prediction and
CNN + PF combined prediction based only on nor-
mal data training, the feature of whole life time data is
extracted after normal data training by the same model
as above, and the CNN regression model is developed
to predict the data in the degradation stage. The com-
parison of prediction results between the single CNN
regression and CNN + PF is shown in Figure 19.

As can be seen from Figure 19, due to the huge dif-
ference in data distribution between normal stage and
degeneration stage, the single CNN regression model
fails to predict the evolution trend of abnormal data
after training only based on normal data. On the con-
trary, the particle filter method can solve this problem,
for it can predict the prior estimate at current time
according to the optimal estimate of the last time by
constructing an exponential equation with very similar
evolution characteristics, and achieve gradual correc-
tion by using the observation equation, so as to obtain
the prediction result of the remaining life that is closest
to the reality. The comparison results show that the
combination model of CNN and PF is feasible.

Summary

(1) Through the comparison of three different
whole lifetime test results of rolling bearings, it
is proved that the bearing degradation features
extracted by convolutional neural network
have higher prediction accuracy of remaining
useful life than the traditional feature index

Time step (*6min)

Figure 19. Extracted evolution trend based on single CNN
regression model and CNN + PF model.

RMS, which shows that the bearing degrada-
tion features extracted based on deep learning
method are more sufficient and can better
reflect the RUL situation of bearings;

(2) By comparing the particle filter prediction
errors of the two characteristics under various
sampling methods and particle numbers, it is
found that the overall error is lower when the
particle number is 1000, and the system resam-
pling method has the best performance.
Among them, the CNN characteristic error is
significantly lower than RMS;

(3) All the errors of the bearing damage evolution
characteristics extracted by CNN are lower
than that of RMS after particle filter tracking
and prediction, and the accuracies are less
influenced by the number of particles or resam-
pling method, which proves better performance
of deep learning method;

(4) Compared with the traditional deep regression
model, the CNN and PF combined model can pre-
dict the evolution of degradation state accurately
only based on normal data, which is of great sig-
nificance in practical engineering application.
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