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Study on Nonlinear Dynamic
Response of an Unbalanced Rotor
Supported on Ball Bearing
An unbalanced rotor dynamic model supported on ball bearings is established. In the
model, three nonlinear factors of ball bearing are considered, namely, the clearance of
bearing, nonlinear Hertzian contact force between balls and races, and the varying
compliance vibrations because of periodical change in contact position between balls
and races. The numerical integration method is used to obtain the nonlinear dynamic
responses; the effects of the rotating speed and the bearing clearance on dynamic re-
sponses are analyzed; and the bifurcation plots, the phase plane plots, the frequency
spectra, and the Poincaré maps are used to carry out the analyses of bifurcation and
chaotic motion. Period doubling, quasiperiod loop breaking, and mechanism of intermit-
tency are observed as the routes to chaos. �DOI: 10.1115/1.3142883�
Introduction
At present, in the research of rotor dynamics, the effect of bear-

ngs on rotor dynamic responses has already been taken fully into
ccount and the rotor-bearing system dynamics has been devel-
ped �1�. In the research of rotor-bearing system dynamics, the
urrent main research work is to carry out mechanism analyses of
ingle and coupling faults, such as dynamic analyses of crack
otor under nonlinear oil-film force �2,3�, rubbing rotor �4,5�, and
edestal looseness rotor �6–9� and so on.

Nowadays, the dynamic responses of a fault rotor supported on
il sliding bearings have been studied extensively, however, the
ynamic model of a fault rotor supported on ball bearings is still
ery immature �10–12�, and the ball bearings’ clearance and the
arying compliance �VC� vibration are not considered.

In the research on ball bearing vibrations, although the model
f ball bearings is almost perfect, it is not combined well with the
otor vibration. Fukata et al. �13� and Mevel and Guyader �14�
nly considered the parameter excitation �VC vibration�, which
omes from varying stiffnesses, but not the effect of rotor unbal-
nce; the unbalance force and bearing clearance were considered
y Kim and Noah �15,16�, but not VC vibration; the combined
ffect of unbalance, bearing clearance, nonlinear Hertzian contact
orce, and VC vibration were studied by Tiwari and Gupta �17�;
ut the unbalance force was considered as a constant force
hroughout the rotating speed range. The works of Bai and Xu
18� considers the effects of clearance, race waviness, and unbal-
nce on the cage speed and the high-speed effects of ball centrifu-
al forces and gyroscopic moment, but the rotor is only consid-
red as a participating mass so that the first-order bending
ibration of rotor cannot be simulated. Therefore, these models all
ave some disadvantages.

In this paper, a new nonlinear dynamic model of an unbalance
otor supported on ball bearings is established, in which not only
he rotor unbalance, bearing clearance, nonlinear Hertzian contact
orce, and VC vibration are considered together, but also the un-
alance force that varies with rotating speed. In addition, in the
ew rotor-bearing model, the mass of rotor includes three parts,
amely, rotor mass at the rotor disk, left bearing, and right bear-
ng, and the first-order bending vibration can then be simulated.
otor responses are obtained by numerical integration, and the
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effects of rotating speed and bearing clearance on system re-
sponses are studied. The bifurcation plots, the phase plane plots,
the frequency spectra, and the Poincaré maps are used to analyze
the characteristics of bifurcation and chaos of system responses.
Three routes to chaos are observed.

2 Dynamic Model of a Rotor Supported on Ball Bear-
ing

2.1 Dynamic Equations. In this paper, a new dynamic model
of an unbalance rotor supported on ball bearings is set up, and Fig.
1 shows the schematic of this model. In this model, the two ends
of this rotor are supported on similar ball bearings. The new rotor-
bearing model, which is established in this paper, combines the
rotor model, which makes reference to the literature �1�, and the
ball bearing model, which makes reference to the literature �13�.
The rotor model in this paper is assumed symmetrical to the cen-
tral plane and the gyroscopic forces are neglected.

Figure 1 Notations and Variables: O1, O2, O3—bearing geomet-
ric center, rotor geometric center, and rotor center of mass;
mrp—equivalent mass of rotor at the disk; mrL, mrR—rotor equiva-
lent mass at the left and the right bearings, they include the inner
ring mass and the rotor mass which is installed into bearing; crp,
crb—damping coefficient of rotor at the disk and bearing; k—the
stiffness of the elastic shaft; e—rotor eccentricity distance; FxL,
FyL—supporting force components in the X and Y directions of
left bearing; FxR, FyR—supporting force components in the X and
Y directions of right bearing.

The system differential equations of motion can be obtained as
follows:

mrpẍrp + crpẋrp + k�xrp − xrR� + k�xrp − xrL� = mrpe�2 cos��t�

mrpÿrp + crpẏrp + k�yrp − yrR� + k�yrp − yrL�

= mrpe�2 sin��t� − mrpg

mrRẍrR + crbẋrR + k�xrR − xrp� = FxR

�1�
mrRÿrR + crbẏrR + k�yrR − yrp� = FyR − mrRg

mrLẍrL + crbẋrL + k�xrL − xrp� = FxL

mrLÿrL + crbẏrL + k�yrL − yrp� = FyL − mrLg
where � is the rotor angular speed.

DECEMBER 2009, Vol. 131 / 061001-109 by ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o
i
f
b
r
i
w
c
p
r
t
v
b

r
c
i
i

u
t
t
r
o

a

T

0

Downloa
2.2 Ball Bearing Model. Ball bearing consists of inner race,
uter race, and rolling balls and cages. The outer race acts on the
nner race by rolling balls, and their interaction force is a restoring
orce, which is generated by the contact deformation between
alls and races. In the rotor-ball bearing system, usually, the outer
ace of the ball bearing is fixed to the bearing housing and the
nner race is rigidly fixed to the rotating shaft. When ball bearing
orks, with the contact position between balls and races periodi-

ally varying, the total stiffness and compliance of bearing vary
eriodically, and the varying compliance of bearing is a paramet-
ic excitation of the rotor-balling bearing coupling system; hence,
he so-called varying compliance �VC� vibration is generated. VC
ibration is an inherent vibration, and it always exists even if the
earing is newly installed and is fault-free.

Figure 2 is a schematic of a ball bearing model, which makes
eference to the literature �13�. The excitations of ball bearing
ome from two aspects: one is the rotor imbalance, and the other
s the continuous periodic change in the total stiffness of the bear-
ng, which is a parametric excitation.

In the ball bearing model, it is supposed that the balls are eq-
ispaced between the surfaces of the inner and the outer races, and
he contact angles are not considered. Vin is the tangent velocity of
he contact point between the ball and the inner race; �inner is the
otating angular velocity of the bearing inner race; R is the radius
f the outer race; and r is the radius of the inner race. Therefore,

Vin = �inner � r �2�
nd, the tangent velocity of the cage is

Vcage = Vin/2 = ��inner � r�/2 �3�
herefore, the angular velocity of the cage is given by

Fig. 1 Unbalance rotor-ball bearing dynamic model
Fig. 2 Schematic of the ball bearing
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�cage =
Vcage

�R + r�/2
=

��inner � r�/2
�R + r�/2

=
�inner � r

�R + r�
�4�

Because the inner race is fixed to the shaft, �inner=�rotor. If Nb is
the number of balls, and then VC frequency can be given by

�VC = �cage � Nb = �rotor � � r

R + r
� Nb� = �rotor � BN �5�

where

BN =
r

R + r
� Nb �6�

Obviously, the variable BN depends on the dimensions of the
bearing.

Assume the angle location of the jth ball is � j, which is given
by � j =�cage� t+2� /Nb�j−1� , j=1,2 , . . . ,Nb. Also, assume x
and y are the vibration displacements of the center of the inner
race in the X and Y directions, respectively, and 2r0 is the bearing
clearance. Therefore, the normal contact deformation between the
jth ball and races is given by

� j = x cos � j + y sin � j − r0 �7�

According to the nonlinear Hertzian contact theory, the contact
force f j between ball and race due to the rolling contact can be
obtained. At the same time, because the ball at angular location � j
can only result in a normal positive restoring force f j, f j must be
greater than zero. Therefore, only � j �0 for the contact force can
appear. By introducing the function H�x� defined as

H�x� = �1, x � 0

0, x � 0
� �8�

f j can be obtained as follows:

f j = Cb�� j�3/2 = Cb�x cos � j + y sin � j − r0�3/2H�x cos � j + y sin � j

− r0� �9�

where Cb is the Hertzian contact stiffness and depends on the
contact material and shape. The components of f j in the X and Y
directions are as follows:

f jx = Cb�x cos � j + y sin � j − r0�3/2H�x cos � j + y sin � j − r0�cos � j

�10�
f jy = Cb�x cos � j + y sin � j − r0�3/2H�x cos � j + y sin � j − r0�sin � j

Therefore the bearing forces generated by the ball bearing are
given by

Fx = 	
j=1

Nb

f jx = 	
j=1

Nb

Cb�x cos � j + y sin � j − r0�3/2

�H�x cos � j + y sin � j − r0�cos � j

�11�

Fy = 	
j=1

Nb

f jy = 	
j=1

Nb

Cb�x cos � j + y sin � j − r0�3/2

�H�x cos � j + y sin � j − r0�sin � j

Therefore, the bearing forces in Fig. 1 can be obtained by the
following:

�1� When x=xrR, y=yrR, then FxR=Fx, FyR=Fy.
�2� When x=xrL, y=yrL, then FxL=Fx, FyL=Fy.

2.3 Original Dynamic Parameters. In this paper, making
reference to literature �1�, the original parameters of the rotor
system are chosen as follows: mrR=mrL=4.0 kg, mrp=32.1 kg,
crb=1050 N s /m, crp=2100 N s /m, k=2.5�107 N /m, and e
=0.01 mm.
The JIS6306 ball bearing in Ref. �13� is chosen as the ball
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earing in this paper, and its parameters are listed in Table 1.
In order to study in depth the dynamic behavior of an unbalance

otor supported on ball bearings, the system dynamic responses
eed to be obtained. There are many methods to obtain the peri-
dic solution of the nonlinear system, but numerical methods are
he most efficient approach to study the quasiperiodic and chaos
henomena. Because of the very strong nonlinearity of the rotor-
all bearing system, the Runge–Kutta–Fehlberg method �19� is
sed to solve differential equations and obtain the responses of the
otor-ball bearing system.

Dynamic Behavior Analysis of an Unbalanced Rotor
upported on Ball Bearing

3.1 Model Verifying. In the reference, a dynamic model of an
nbalanced rotor supported on ball bearings, which are subject to
constant vertical radial load, was established by Mevel and Guy-

der �14�, and the sixth order Runge–Kutta method was used to
btain the responses of the rotor.

In order to verify the new rotor-bearing model, in this paper, the
imulation results of the new model should be compared with the
esults of Mevel and Guyader �14� based on the same computation
onditions. The rotor parameters are determined as: mrR=mrL
2.0 kg, mrp=8 kg, crb=200 N s /m, crp=2940 N s /m, k=2.5
108 N /m, e=0.01 mm. The identical ball bearing as reference

14� is used, and its parameters are listed in Table 1.
In the rotor model of Mevel and Guyader �14�, the rotor is

onsidered as only one participating vibration mass so that the
otor bending vibration cannot be simulated; in order to approxi-
ate the rotor model of Mevel and Guyader �14�, in the compu-

ation conditions, the rotor stiffness k is so great that the rotor
ibrates as a whole and the bending vibration of the rotor is not
enerated.

Figures 3�a� and 4�a� are, respectively, the vibration displace-
ents in the X and Y directions at the rotor disk at a rotating speed

f 300 rpm; Figs. 3�b� and 4�b� are, respectively, the vibration
isplacements in the X and Y directions at the rotor disk at a
otating speed of 300 rpm in Ref. �14� by Mevel and Guyader.
bviously, their results are almost identical; therefore, the correct-
ess of the new rotor-bearing model is fully verified.

Because the excitations of the unbalanced rotor supported on
all bearing come from two aspects—one is rotating frequency
xcitation from unbalance, and the other is the VC frequency ex-
itation from the periodic variety of bearing stiffness—when the
otating speed is very low, unbalance force is very weak, and the
C vibration can be observed clearly because of the periodic va-

iety of bearing stiffness. Hereinto, the frequency of VC vibration

Table 1 The main paramete

Radius of the
outer race,

R �mm�

Radius of the
inner race,

r �mm�
No. of balls,

Nb

63.9 40.1 8

ig. 3 The rotor response in the X direction at rotor disk „nr

300 rpm…
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is BN times the rotating frequency. In this paper, the value of BN
is 3.08, as shown in Table 1. From the frequency spectra of signals
shown in Figs. 5�a� and 5�b�, it can be seen that the rotor vibration
represents the VC frequency �the ball passage frequency� and its
harmonics.

According to the literature �13�, for the JIS6306 ball bearings,
the natural frequencies in the X and Y directions are fx
=101.5 Hz and fy =259 Hz, respectively. The two critical speeds
of the bearing assembly are defined by a ball pass frequency fb
equal to one of the resonant frequency, and fb=0.05139 nr, here-
into the nr is the rotating speed. Thus, the two critical speeds in
the X and Y directions are nx=1976 rpm and ny =5040 rpm, re-
spectively. The study of Fukata et al. �13� shows that when the
rotating speed is far from the two critical rotating speeds in the X
and Y directions, the motion is periodic and represents the ball
passage frequency and its multiple harmonic components. Appar-
ently, the result of this paper accords with the conclusion, there-
fore, the correctness of the new rotor-bearing model is further
verified.

3.2 The Effect of Rotating Speed on System Responses.
With the rotating speed increasing, the excitation of the unbalance
force is strengthened, and in the system responses, the component
of the rotating frequency gradually increases. Figures 6 and 7 are,
respectively, the frequency spectrum and Poincaré map of the ro-
tor disk displacement in the X directions at a rotating speed of
3000 rpm. When the rotating speed increases to 4000 rpm, these
results are shown in Figs. 8 and 9; when the rotating speed in-
creases to 5000 rpm, they are shown in Figs. 10 and 11; when the
rotating speed increases to 6000 rpm, they are shown in Figs. 12
and 13; when the rotating speed increases to 7000 rpm, they are
shown in Figs. 14 and 15; and finally when the rotating speed
increases to 8000 rpm, the results are shown in Fig. 16 and 17.

Here, the displacement and the velocity of system response are

of the JIS6306 ball bearing

Contact stiffness,
Cb �N /m3/2�

Bearing clearance,
2r0 ��m� BN

13.34�109 40 3.08

Fig. 4 The rotor response in the Y direction at rotor disk „nr
=300 rpm…
rs
Fig. 5 The rotor response spectra at rotor disk „nr=300 rpm…
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ampled at every rotating period, the displacement sampling
oints are acted as the x-coordinate, the velocity sampling points
re acted as the y-coordinate, and the Poincaré map is obtained. If
he system response has n periodic solutions, there are n isolated
oints in its Poincaré map; if the system response is quasiperiodic,
here are some close curves in its Poincaré map; if the system
esponse is chaos, there are a piece or many pieces of dispersed
oints in its Poincaré map.

In this paper, the ratio BN of VC frequency to rotating fre-
uency is an irrational number, because BN is given by BN=Nb
r / �R+r�=401 /130
3.08. From the frequency spectrum shown

n Figs. 6, 8, 10, 12, 14, and 16, it can be seen that there are
otating frequency components and its harmonics, VC frequency
omponent and its harmonics, and the sum and difference of the
ombination frequency components in these frequency spectra.
he four varying phases of the system state can be found as fol-

ows. �1� When the rotating speed is very low, vibration response
ainly includes the rotating frequency component and its harmon-

cs and the VC frequency component and its harmonics; therefore,

Fig. 6 Spectrum „nr=3000 rpm…

Fig. 7 Poincaré map „nr=3000 rpm…
Fig. 8 Spectrum „nr=4000 rpm…

61001-4 / Vol. 131, DECEMBER 2009
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the system motion is quasiperiodic, and there is a close curve in
its Poincaré map, which is shown in Fig. 7. �2� With the speed
increasing, the rotating frequency component gradually increases
in the system response. From Figs. 8, 10, and 12, we can find out
that the different combinations of frequency components give
birth to more frequency components, but the system motion is still
quasiperiodic because their Poincaré maps still show the close
curves in Figs. 9, 11, and 13. �3� With the speed continuously
increasing, when the speed is close to the first-order critical speed,
as shown in Fig. 14, the rotating frequency components increase
quickly, the VC frequency components and the combination fre-
quency components decrease relatively, and the system enters the
period 1 motion, where there is only one isolated point in its
Poincaré map, as shown in Fig. 15. �4� When speed exceeds the
first critical speed, the more combination frequency components
and subharmonics come forth, and the continuous frequency spec-
tra appear in Fig. 16; at the same time, pieces of dispersed points
like a cloudlet come forth in the Poincaré maps, as shown in Fig.
17. Obviously, the system shifts into a chaotic state.

Fig. 9 Poincaré map „nr=4000 rpm…

Fig. 10 Spectrum „nr=5000 rpm…
Fig. 11 Poincaré map „nr=5000 rpm…
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3.3 The Effect of Bearing Clearance on the Bifurcation of
he Rotor Motion. Due to the installation and employing of ball
earings, some clearances are inherent to the process. This clear-
nce is a very strong nonlinear factor in the system dynamics. In
ddition, there are other nonlinear factors in ball bearing such as
he nonlinear Hertzian contact force and the nonlinear total stiff-
ess. Under certain conditions, the nonlinear system will give
irth to bifurcation. In order to study the effect of the bearing
learance on the bifurcation behavior of the system, in this paper
he bifurcation plots under different bearing clearances are ob-
ained by numerical integration and the routes to chaos are
nalyzed.

Figure 18 shows the bifurcation plots with bearing clearance of
�m. From the plots it can be seen that when the rotating speed

s lower than 5000 rpm, the system motion is quasiperiodic be-
ause of the concurrence of the rotating frequency component and
C frequency component. When the rotating speed is higher than
000 rpm, because the VC vibration of the system is relatively
eak, the system motion is periodic and the system does not

Fig. 12 Spectrum „nr=6000 rpm…

Fig. 13 Poincaré map „nr=6000 rpm…
Fig. 14 Spectrum „nr=7000 rpm…
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appear to engage in chaos regime.
Figure 19 shows the bifurcation plots with bearing clearance of

10 �m. According to the Fig. 19, the system motion can be di-
vided into the following six segments:

�1� Segment A (2000–5000 rpm). Because of the concurrence
of the rotating frequency component and VC frequency
component in the system, the system motion is quasiperi-
odic.

�2� Segment B (5000–12,000 rpm). When the rotating speed is
near the first-order critical speed, the unbalance response
becomes very great, and the VC vibration of the system is
relatively weak. Thus, the system enters the period 1 mo-
tion.

�3� Segment C (12,000–13,500 rpm). As the rotating speed
gradually increases, period-doubling appears �Fig.
20�a��.When the fractional harmonic components combine
each other with VC vibration in the way of sum and differ-
ence, the quasiperiod loop starts to break �Fig. 20�b�� and
chaos appears �Fig. 20�c��. Finally, through inverse bifur-

Fig. 15 Poincaré map „nr=7000 rpm…

Fig. 16 Spectrum „nr=8000 rpm…
Fig. 17 Poincaré map „nr=8000 rpm…

DECEMBER 2009, Vol. 131 / 061001-5
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cation, system gets out of the chaotic regime and returns to
period 1 motion. Apparently this route to chaos is from
period 1 to period n through frequency-dividing, to quasi-
periodic through frequency combination, and to chaos
through quasiperiod loop breaking.

�4� Segment D (13,500–19,000 rpm). This is a typical route of
period-doubling bifurcation. As the rotating speed in-
creases, period-doubling appears �according to Fig. 21�a��.
When the rotating speed continually increases, chaos ap-
pears �according to Fig. 21�b��. Finally through inverse bi-
furcation the system gets out of the chaotic regime �accord-
ing to Fig. 21�c��.

�5� Segment E (19,000–20,000 rpm). When the rotating speed
is around 20,000 rpm, in the system response, the period
and chaos appear by turns; therefore, this is a typical chaos
phenomenon of intermittency. From the time waveform, the
phase plane plot, and the Poincaré map shown in Fig. 22,

Fig. 18 The bifurcation

Fig. 19 The bifurcation
Fig. 20 Poincaré maps

61001-6 / Vol. 131, DECEMBER 2009
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two kinds of quasiperiodic motions appear by turns. Obvi-
ously, this is a route of intermittency to chaos.

�6� Segment F (20,000–25,000 rpm). As shown in Figs. 23 and
24, at the rotating speed of 20,053 rpm, the system motion
is periodic; at the rotating speed of 21,963 rpm, 1/8 frac-
tional harmonic components appear and the system motion
is periodic 8; when the rotating speed reaches 23,873 rpm,
because of the combination of the many irreducible fre-
quency components, the system motion state is quasiperi-
odic. Therefore, in this segment, chaos does not appear.

Figures 25–27 are the system bifurcation plots with bearing
clearance of 20 �m, 40 �m and 80 �m, respectively. From the
bifurcation plots, it can be seen that with the bearing clearance
increasing, the segments of the rotating speeds of the quasiperi-
odic and chaos motions are more and wider, and intermittency and
period-doubling bifurcation can be observed as the routes to

ts „clearance is 0 �m…

ts „clearance is 10 �m…
plo
of xrp in segment C
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Fig. 21 Poincaré maps of xrp in segment D
Fig. 22 Time waveform, phase plane plot, and Poincaré map of xrp in segment E „nr

=19,099 rpm…
Fig. 23 Poincaré maps of x in segment F
rp
Fig. 24 Phase plane plots of xrp in segment F
Fig. 25 Bifurcation plots „clearance is 20 �m…
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haos. As the bearing clearance continuously increases, the dura-
ion of the chaos is longer. As can be seen, the bearing clearance
as an important effect on the stability of the system.

Conclusions
The dynamic model of an unbalance rotor supported on the ball

earings is established. In the model, the bearing clearance, the
onlinear Hertzian contact force, and the VC vibration because of
he periodic variety of the total stiffness are considered. The effect
f the dynamic varying unbalance force with the rotating speed on
all bearing is considered, and a rotor model with three masses is
stablished. The Runge–Kutta–Fehlberg method is used to calcu-
ate the system responses.

The new model is verified by comparing with the computing
esults of Mevel and Guyader �14� based on the same rotor and
earing parameters, and the results fully show the correctness of
he new model. The effect of the rotating speed on the rotor-
earing system responses is analyzed, and many combination fre-
uency components of rotating frequency and VC frequency are
ound with rotating speed increasing gradually.

The phenomena of the system bifurcation and the effect of the
earing clearance on the system motion are studied. Period-
oubling bifurcation, quasiperiod loop breaking, and mechanism
f intermittency are observed as the routes to chaos. By compar-
ng the bifurcation plots under the various bearing clearances, it is
ound out that the larger the bearing clearance, the longer the
uration of chaos and the worse the stability of the system. There-
ore, in the process of design and operation of the ball bearing, it

Fig. 26 Bifurcation pl

Fig. 27 Bifurcation pl
s necessary to effectively control the ball bearing clearance.
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