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Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced
force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness
fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for
certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam
method; the support systems aremodeled by lumped-massmodel; the support looseness faultmodel is also introduced.The coupled
system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact
characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to
the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which
is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine
looseness fault model.

1. Introduction

Looseness fault is a common fault in rotating machinery,
which is caused by low installation quality or long-termvibra-
tion. When looseness fault exists in rotor-support-casing
system, rotor will be lifted up periodically; if the unbalanced
force in rotor system is greater than the gravitational force,
it will cause severe vibration. Serious looseness fault may
lead to rub-impact fault between the rotor and the stator.
Therefore, effective identification of the looseness fault is of
great significance.

At present, many scholars have carried out a few works
on the looseness fault, mostly based on a lumped-mass
model. Muszynska and Goldman [1] studied one-lateral-
mode unbalanced and radical side-loaded rotor with either
a loose pedestal or occasional rotor-to-stator rubbing, which
exhibited regular periodic vibrations of synchronous (1×) and
subsynchronous (1/2×, 1/3×,. . .) orders, as well as chaotic
vibration patterns of the rotor, all accompanied by higher
harmonics. Goldman and Muszynska [2] developed an ana-
lytical algorithm for investigating local nonlinear effects

in rotor systems. They used a specially developed variable
transformation that smoothes discontinuities, and then they
applied an averaging technique. Their results showed good
agreement with experimentally observed typical behaviors
and orbits of rubbing rotors. In the last two papers, the
effects of pedestal looseness on the system response were also
studied. Muszynska [3] studied a mathematical model of this
phenomenon for loose rotating parts in rotating machines.
Chu and Tang [4] established a nonlinear mathematical
model, containing stiffness and considering damping forces
with trilinear forms.The shootingmethod was used to obtain
the periodic solutions of the system. Stability of these periodic
solutions was analyzed by using the Floquet theory. Period-
doubling bifurcation and Neimark-Sacker bifurcation were
found. Finally, the governing equations were integrated by
the fourth-order Runge-Kutta method. Three kinds of routes
to or out of chaos, that is, period-to-chaos, quasiperiodic
route, and intermittence, were found. Chen [5] established
a new rotor-ball bearing-stator coupling dynamics model
and the nonlinear dynamic response characteristics of rotor-
ball bearing-stator system under unbalance and looseness
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coupling faults were obtained. Lu and Chu [6] studied the
looseness fault of rotor system by experiments. The charac-
teristics of multiple frequency and frequency division were
found. Ji and Zu [7] analyzed the free and forced vibration
of a nonlinear bearing system to illustrate the nonlinear
effect on the free and forced vibrations of the system by the
method of multiple scales. He et al. [8] and Lee and Choi
[9] studied fault diagnosis of rotor systems with pedestal
looseness with different analytical methods, such as genetic
algorithm and Hilbert-Huang transform. Reddy and Sekhar
[10] used artificial neural networks to identify unbalance
and looseness. Ma et al. [11] set up a mechanical model
of looseness of fastening bolt on the bearing pedestal and
investigated the dynamic characteristics of rotor by using the
nonlinear oil-film model.

In recent years, the finite element method has been used
to establish looseness fault model by domestic and foreign
scholars. Behzad and Asayeshthe [12] proposed a finite
element method for studying the effects of loose rotating
disks on the rotor-bearing systems’ response. Lee et al. [13]
studied a generalized finite element modeling method of
a rotor-bearing system by using the state-space Newmark
method based on the average velocity concept. Ma et al.
[14] established a finite element model of a rotor system
with pedestal looseness stemming from a loosened bolt
and the effects of the looseness parameters on its dynamic
characteristics were analyzed.

However, at present, there are a few works on support
looseness fault analysis in aeroengine. Due to the low bearing
stiffness in aeroengine, the wide use of thin-walled structure
in rotor and casing, its great flexibility, and the casing
acceleration signal are important to distinguish aeroengine
faults, so aimed at certain type turbofan engine, it is of great
significance to establish a whole model of a rotor-bearing-
casing coupling system andmake research on the acceleration
response characteristics of the looseness fault.

In this paper, a finite elementmodel of certain type turbo-
fan engine with looseness fault is established. The looseness
fault between the bearing and the casing in the model is
studied. Numerical integration method is used to solve the
response of the system. The response characteristics of the
casing acceleration from the time domain and frequency
domain are analyzed. Finally, the simulation is comparedwith
the real trial running vibration signals of the turbofan engine,
and connector looseness characteristics are analyzed. It is
proved that the aeroengine support looseness fault model is
valid.

2. A Dynamic Model for Certain Type
Turbofan Engine

2.1. The Structure Sketch Map for Certain Type Turbofan
Engine. Rotor-bearing-casing structure sketch map for cer-
tain type turbofan engine is shown in Figure 1. The symbols
in Figure 1 are described as follows: 𝑃

1
denotes fan disk; 𝑃

2

denotes motor disk; 𝑃
3
denotes compressor disk; 𝑃

4
denotes

the first turbine disk; 𝑃
5
denotes the second turbine disk;

𝐶
1
denotes the intermediate casing; 𝐺

1
denotes the gear

coupling between the fan shaft and the transmission shaft;𝐺
2

denotes the gear coupling between the transmission shaft and
the compressor shaft; 𝐺

3
denotes the gear coupling between

the compressor shaft and the turbine shaft; 𝑆
1
denotes the

fan support point bearings; 𝑆
2
denotes the compressor front

support bearings; 𝑆
3
denotes the compressor rear support

bearings; 𝑆
4
denotes the turbine support bearings; 𝐼

1
denotes

the front installation node; 𝐼
2
denotes the back installation

node; 𝑘
𝑔
is the mesh stiffness of a gear pump; 𝑘

𝑓1
, 𝑘
𝑓2
, 𝑘
𝑓3
,

and 𝑘
𝑓4

are the support stiffness between the rotor and the
casing; and 𝑘

𝑐
is the connection stiffness between the casing

and the base.
The rotor-support-casing coupling dynamic model for

a turbofan engine is established. Its concrete methods for
modeling are described as follows.

2.2. Dynamics Model

2.2.1. Rotor Model. The rotor is composed of a number of
rigid rotating disks and elastic shaft. The elastic shaft is dis-
creted by beam element model, and the shear deformations
and gyroscopic moments and inertias of shaft are considered;
the rigid rotating disk is modeled as discrete lumped mass,
and the mass, inertias, and gyroscopic moments are consid-
ered. All parts are coupled by nonlinear forces and moments.
The finite element rotor dynamic model is shown in Figure 2.

The symbols in Figure 2 are described as follows: for
each rotor shaft beam element, 𝐸, 𝐼, 𝐺, 𝜇, 𝐿, 𝜌, and 𝐴,
respectively, are the elasticmodulus,moment of inertia, shear
modulus, Poisson’s ratio, shaft length, shaft density, and shaft
cross-sectional area. 𝑃

𝑖
is the rigid rotating disks; 𝐹

𝑥𝑖
, 𝐹
𝑦𝑖
,

𝑀
𝑥𝑖
, and 𝑀

𝑦𝑖
are forces and moments which act on the 𝑖th

node of rotor in the 𝑋 and 𝑌 directions. 𝑋𝑌𝑍 in Figure 3
is a fixed coordinate system; under deformation state, any
cross-section’s position relative to the fixed coordinate system
is determined as follows: elastic shaft centerline position is
determined by the displacement 𝑥 in the𝑋 direction and the
displacement 𝑦 in the𝑌 direction; cross-section orientation𝜙
is determined by the angle around the 𝑥-axis and the angleΨ
around the 𝑦-axis; in addition, the cross-section also rotates
around the 𝑧-axis.

(1) Motion Equations of Rigid Disk Element. Suppose the
circular disk’s mass is 𝑚

𝑑
, diameteral moment of inertia is

𝐽
𝑑𝑑
, and polar moment of inertia is 𝐽

𝑃𝑑
; polar moment of

inertia 𝐽
𝑃𝑑
= 2𝐽
𝑑𝑑
, andthe second term refers to “disk,” shown

as 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑀
; 𝜔 is the disk’s rotating speed. Through the

Lagrange equation we can obtain the motion equations of
rigid disk relative to the fixed coordinate system:

(M
𝑇𝑑
+M
𝑅𝑑
) q̈
𝑑
− 𝜔G
𝑑
q̇
𝑑
= Q
𝑑
, (1)

where Q
𝑑
is the generalized external force vector; M

𝑇𝑑

and M
𝑅𝑑

are, respectively, the mass matrix and the mass
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Figure 1: Rotor-bearing-casing model sketch map of a type of aeroengine (unit: mm).
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Figure 2: The finite element rotor dynamic model.

inertia matrix; G
𝑑
is gyroscopic matrix; and q is generalized

displacement vector, q = [𝑥, 𝑦, 𝜙, 𝜓]. Then,

M
𝑇𝑑
=

[
[
[

[

𝑚
𝑑

0 0 0

0 𝑚
𝑑
0 0

0 0 0 0

0 0 0 0

]
]
]

]

, M
𝑅𝑑
=

[
[
[

[

0 0 0 0

0 0 0 0

0 0 𝐽
𝑑𝑑

0

0 0 0 𝐽
𝑑𝑑

]
]
]

]

,

G
𝑑
=

[
[
[

[

0 0 0 0

0 0 0 0

0 0 0 −𝐽
𝑝𝑑

0 0 𝐽
𝑝𝑑

0

]
]
]

]

.

(2)

(2)MotionEquations of BeamElement. In this paper, the beam
element is adopted, and each beam element has 2 nodes and
8 DOFs, and each node has 4 DOFs, which are, respectively,
the displacements 𝑥 and 𝑦 in the 𝑋 and 𝑌 directions, and
rotating angles 𝜙 and Ψ around the 𝑥-axis and 𝑦-axis. The
cross-section’s displacement of the element is the function
of the time and the position along the element axis. The
generalized displacement vector of the element is q

𝑒
(𝑡) =

[𝑞
1𝑒
𝑞
2𝑒
𝑞
3𝑒
𝑞
4𝑒
𝑞
5𝑒
𝑞
6𝑒
𝑞
7𝑒
𝑞
8𝑒
]
𝑇. Through the Lagrange
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Figure 3: Rotor-casing support.

equation, the motion equations of beam element relative to
the fixed coordinate system can be obtained:

(M
𝑇𝑒
+M
𝑅𝑒
) q̈
𝑒
+ (−𝜔G

𝑒
) q̇
𝑒
+ (K
𝐵𝑒
− K
𝐴𝑒
) q
𝑒
= Q
𝑒
, (3)
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where Q
𝑒
is the generalized external force vector; M

𝑇𝑒
and

M
𝑅𝑒

are, respectively, the mass matrix and the mass inertia
matrix;G

𝑒
is gyroscopicmatrix;K

𝐵𝑒
are the element’s bending

and shear stifness matrix; and K
𝐴𝑒

is the element’s tensile
stifness matrix. These matrixes can be found in the literature
[15].

The rotor system’s motion equation through the element’s
motion equations can be obtained, which is

(M
𝑠
) q̈
𝑠
+ (C
𝑠
− 𝜔G
𝑠
) q̇
𝑠
+ K
𝑠
q
𝑠
= Q
𝑠
, (4)

where Q
𝑠
is the generalized external force vector; M

𝑠
is the

massmatrix;G
𝑠
is gyroscopicmatrix;Κ

𝑠
is the stiffnessmatrix

of the system; and C
𝑠
is the damping matrix of the system.

In this paper, C
𝑠
is assumed to be proportional damping

matrix, that is, C
𝑠
= 𝛼
0
M
𝑠
+ 𝛼
1
Κ
𝑠
, of which, 𝛼

0
and 𝛼

1
are

constants. Because the 𝑖th order damping ratio is

𝜉
𝑖
=

1

2

(

𝛼
0

𝜔
𝑖

+ 𝛼
1
𝜔
𝑖
) , (5)

obviously, after any two natural frequencies and damping
ratios of the rotor are acquired by modal experiment, 𝛼

0
and

𝛼
1
can be solved through (5), and the system’s damping ratio

matrix C
𝑠
can be obtained.

2.2.2. Casing Model. In general, the casing finite element
model can be constructed by the beam element, conical shell
element, and surface shell element. However the casing is
a shell structure, and its vibration modal has many forms
whose circumferential wave number is 0, 1, 2, . . ., and so
on. However, when the casing couples with the rotor, only
the modal of wave number 1 appears, and the cross-section
of rotor does not deform. Therefore, the casing can be
constructed by using the common beam element which does
not rotate [15].

In this paper, the casing is modeled as a beam which
does not rotate, like the rotor modeling, by means of finite
elementmodelingmethod the differential equation ofmotion
of casing is

(M
𝑐
) q̈
𝑐
+ C
𝑐
q̇
𝑐
+ K
𝑐
q
𝑐
= Q
𝑐
, (6)

where Q
𝑐
is the generalized excitation force vector;M

𝑐
is the

mass matrix of casing; Κ
𝑐
is the stiffness matrix of casing; C

𝑐

is the damper matrix of casing; likewise, C
𝑠
is assumed to be

proportional damping matrix.

2.2.3. Discrete Support Model

(1) The Support Connection between Rotor and Casing. Each
support connection between rotor and casing 𝑅𝐶

𝑖
(𝑖 =

1, 2, . . . , 𝑁) includes ball bearing and bearing housing. Sup-
pose that 𝑚

𝑤𝑖
is the outer mass of bearing; 𝑚

𝑏𝑖
is the

mass of bearing housing; 𝑘
𝑡𝑖
is the support stiffness between

outer race and bearing house; 𝑐
𝑡𝑖
is the damping coefficient

between outer race and the bearing housing; and 𝑘
𝑓𝑖
, 𝑐
𝑓𝑖
are,

respectively, the support stiffness and damping coefficient
between the casing and the bearing housing. As shown in

Figure 3, 𝐹
𝑦𝑅𝑖

and 𝐹
𝑥𝑅𝑖

are the force of rotor acting on the
support 𝑅𝐶

𝑖
and the 𝐹

𝑦𝐶𝑖
and 𝐹

𝑥𝐶𝑖
are the force of casing

acting on support 𝑅𝐶
𝑖
. It is assumed that support 𝑅𝐶

𝑖
is

connected with the 𝑚th node of rotor and the 𝑛th node of
casing. In this paper, the looseness fault between the bearing
house and casing is considered.

In this paper, the bearing outer ring is supposed to be
fixed on the bearing housing, and the inner ring is fixed on the
rotating shaft.Assume that the displacements of the𝑚th node
of rotor are 𝑥

𝑅𝑚
and 𝑦

𝑅𝑚
; let 𝑥 = 𝑥

𝑅𝑚
− 𝑥
𝑤𝑖
, 𝑦 = 𝑦

𝑅𝑚
− 𝑦
𝑤𝑖
;

according to Chen et al. [16], the ball force can be expressed
as

𝐹
𝑥𝑅𝑖
=

𝑁

∑

𝑗=1

𝐶
𝑏
(𝑥 cos 𝜃

𝑗
+ 𝑦 sin 𝜃

𝑗
− 𝑟
0
)

3/2

× 𝐻(𝑥 cos 𝜃
𝑗
+ 𝑦 sin 𝜃

𝑗
− 𝑟
0
) cos 𝜃

𝑗
,

𝐹
𝑦𝑅𝑖
=

𝑁

∑

𝑗=1

𝐶
𝑏
(𝑥 cos 𝜃

𝑗
+ 𝑦 sin 𝜃

𝑗
− 𝑟
0
)

3/2

× 𝐻(𝑥 cos 𝜃
𝑗
+ 𝑦 sin 𝜃

𝑗
− 𝑟
0
) sin 𝜃

𝑗
.

(7)

In the formula, 𝐶
𝑏
is the Hertzian contact stiffness and it

can be obtained from the nonlinear Hertzian contact elastic
analysis of the inner race, the outer race and the balls 𝐻(⋅)
are the Heaviside function; when the function independent
variable is greater than 0, function value is 1; otherwise it is
0. 𝜃
𝑗
is the 𝑗th ball’s angle position, that is, 𝜃

𝑗
= 𝜔Cage × 𝑡 +

(2𝜋/𝑁
𝑏
)(𝑗 − 1), 𝑗 = 1, 2, . . . , 𝑁

𝑏
, where 𝑁

𝑏
is the number of

balls. 𝜔Cage is the cage’s rotating speed. Suppose that the outer
race radius is𝑅, the inner ring radius is 𝑟,𝜔Cage = (𝜔×r)/(𝑅+
𝑟), and 𝜔 is shaft rotating angular velocity.

Therefore, the bearing outer race’s differential equation of
motion is

𝑚
𝑤𝑖
�̈�
𝑤𝑖
+ 𝑘
𝑡𝑖
(𝑥
𝑤𝑖
− 𝑥
𝑏𝑖
) + 𝐹
𝑑𝑥𝑖
= 𝐹
𝑥𝑅𝑖
,

𝑚
𝑤𝑖
̈𝑦
𝑤𝑖
+ 𝑘
𝑡𝑖
(𝑦
𝑤𝑖
− 𝑦
𝑏𝑖
) + 𝐹
𝑑𝑦𝑖
= 𝐹
𝑦𝑅𝑖
− 𝑚
𝑤𝑖
𝑔,

𝑖 = 1, 2, . . . , 𝑁,

(8)

where 𝐹
𝑑𝑥𝑖

and 𝐹
𝑑𝑦𝑖

are damping forces; if the viscous
damping is considered, then

𝐹
𝑑𝑥𝑖
= 𝑐
𝑡𝑖
(�̇�
𝑤𝑖
− �̇�
𝑏𝑖
) , 𝐹

𝑑𝑦𝑖
= 𝑐
𝑡𝑖
( ̇𝑦
𝑤𝑖
− ̇𝑦
𝑏𝑖
) . (9)

(2) The Coupling Connection between Rotor and Rotor.
Assume that the coupling connection 𝑅𝑅𝐶

𝑘
(𝑘 = 1, 2, . . . , 𝑁)

connects the 𝑖th node of left rotor and the 𝑗th node of
right rotor, the radial stiffness of coupling is 𝑘

𝑅𝑟
, the angular

stiffness is 𝑘
𝑅𝛼
, the radial damping is 𝑐

𝑅𝑟
, and the angular

damping is 𝑐
𝑅𝛼
. Let the generalized displacements of the 𝑖th

node of the left rotor be 𝑥
𝑅𝐿𝑖
, 𝑦
𝑅𝐿𝑖
, 𝜙
𝑅𝐿𝑖
, 𝜓
𝑅𝐿𝑖

; the velocities
are �̇�
𝑅𝐿𝑖
, ̇𝑦
𝑅𝐿𝑖
,
̇
𝜙
𝑅𝐿𝑖
, �̇�
𝑅𝐿𝑖

; let the 𝑗th node displacements of
the right rotor be 𝑥

𝑅𝑅𝑗
, 𝑦
𝑅𝑅𝑗
, 𝜙
𝑅𝑅𝑗
, 𝜓
𝑅𝑅𝑗

; the velocities are
�̇�
𝑅𝑅𝑗
, ̇𝑦
𝑅𝑅𝑗
,
̇
𝜙
𝑅𝑅𝑗
, �̇�
𝑅𝑅𝑗

. Then, the forces and the moments
which act on the 𝑖th node of left rotor 𝐹

𝑅𝑥𝑖
, 𝐹
𝑅𝑦𝑖

,𝑀
𝑅𝑥𝑖

,𝑀
𝑅𝑦𝑖
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and the forces and themoments𝐹
𝑅𝑥𝑗

,𝐹
𝑅𝑦𝑗

,𝑀
𝑅𝑥𝑗

,𝑀
𝑅𝑦𝑗

for the
𝑗th node of right rotor are

𝐹
𝑅𝑥𝑖

= 𝑘
𝑅𝑟
(𝑥
𝑅𝑅𝑗

− 𝑥
𝑅𝐿𝑖
) + 𝑐
𝑅𝑟
(�̇�
𝑅𝑅𝑗

− �̇�
𝑅𝐿𝑖
) ,

𝐹
𝑅𝑦𝑖
= 𝑘
𝑅𝑟
(𝑦
𝑅𝑅𝑗

− 𝑦
𝑅𝐿𝑖
) + 𝑐
𝑅𝑟
( ̇𝑦
𝑅𝑅𝑗

− ̇𝑦
𝑅𝐿𝑖
) ,

𝑀
𝑅𝑥𝑖

= 𝑘
𝑅𝛼
(𝜙
𝑅𝑅𝑗

− 𝜙
𝑅𝐿𝑖
) + 𝑐
𝑅𝛼
(
̇
𝜙
𝑅𝑅𝑗

−
̇
𝜙
𝑅𝐿𝑖
) ,

𝑀
𝑅𝑦𝑖
= 𝑘
𝑅𝛼
(𝜓
𝑅𝑅𝑗

− 𝜓
𝑅𝐿𝑖
) + 𝑐
𝑅𝛼
(�̇�
𝑅𝑅𝑗

− �̇�
𝑅𝐿𝑖
) ,

𝐹
𝑅𝑥𝑗

= −𝐹
𝑅𝑥𝑖
,

𝐹
𝑅𝑦𝑗

= −𝐹
𝑅𝑦𝑖
,

𝑀
𝑅𝑥𝑗

= −𝑀
𝑅𝑥𝑖
,

𝑀
𝑅𝑦𝑗

= −𝑀
𝑅𝑦𝑖
.

(10)

(3) The Bearing Housing Looseness Model. Generally, sym-
metric stiffness and asymmetrical stiffness models [4, 5] are
considered in the looseness fault model. But presently the
looseness stiffness model has no universal definition. In this
paper, the simulation analysis is made in two conditions. 𝑘

𝑓0

is assumed to be the equivalent stiffness between the bearing
housing and the casing. Under the condition of relative
displacement, piecewise linear stiffness between the bearing
housing and the casing is considered in this paper; 𝛿 is
assumed to be the looseness amounts of the bearing housing.
The piecewise nonlinear stiffness 𝑘

𝑓
can be expressed as

follows.
Asymmetric stiffness:

𝑘
𝑓
=

{
{
{

{
{
{

{

𝑘
𝑓0

(𝑥
𝑏
− 𝑥
𝑐
> 𝛿)

𝑘
𝑓0

5

(0 ≤ 𝑥
𝑏
− 𝑥
𝑐
≤ 𝛿)

5𝑘
𝑓0

(𝑥
𝑏
− 𝑥
𝑐
< 0) ;

(11)

symmetric stiffness:

𝑘
𝑓
=

{
{
{

{
{
{

{

𝑘
𝑓0

(𝑥
𝑏
− 𝑥
𝑐
> 𝛿)

𝑘
𝑓0

5

(0 ≤ 𝑥
𝑏
− 𝑥
𝑐
≤ 𝛿)

𝑘
𝑓0

(𝑥
𝑏
− 𝑥
𝑐
< 0) ,

(12)

where 𝑥
𝑏
is the displacement of the bearing housing and 𝑥

𝑐

is the displacement of the casing; the stiffness directions in
𝑥 direction and 𝑦 direction are the same. The formulas are
appied in horizontal and vertical directions.

2.2.4. Elastic Support (Installation Node) between Casing and
Base. The elastic connection between casing and base 𝐶𝐵

𝑘

(𝑘 = 1, 2, . . . , 𝑁) connects the 𝑖th node of casing and the
base, the support stiffness is 𝑘

𝐶
, and the damping is 𝑐

𝐶
. Let

the displacements of the 𝑖th node of casing be 𝑥
𝐶𝑖
, 𝑦
𝐶𝑖

and
the velocities �̇�

𝐶𝑖
, ̇𝑦
𝐶𝑖
; then the forces acting on the 𝑖th node

of casing 𝐹
𝐶𝑥𝑖

and 𝐹
𝐶𝑦𝑖

are

𝐹
𝐶𝑥𝑖

= −𝑘
𝐶
𝑥
𝐶𝑖
− 𝑐
𝐶
�̇�
𝐶𝑖
,

𝐹
𝐶𝑦𝑖
= −𝑘
𝐶
𝑦
𝐶𝑖
− 𝑐
𝐶
̇𝑦
𝐶𝑖
.

(13)

Table 1: Unit number of rotors and casings.

Fan rotor Compressor rotor Turbine rotor Casing
11 10 11 24

2.3. Solution of Finite Element Rotor-Support-Casing Coupling
Dynamic Model. Because the number of DOFs in the finite
element rotor-support-casing coupling dynamic model is
very large, in addition, there are a lot of strong nonlin-
ear factors, in this paper a combination time integration
approach is used to solve system’s responses, which combines
the implicit Newmark-𝛽 method and the improved explicit
Newmark-𝛽 method (Zhai [17]). This finite element rotor-
support coupling dynamic solution procedure is shown in
Figure 4.

The merits of combination methods are described as
follows: (1) the Newmark-𝛽method is used to solve the rotor
and casing finite element model, and the Zhai method is used
to solve the lumped parameter support models; therefore,
the combination method is very fit for solving coupling
system; (2) the enormousmatrix need not be formed, and the
matrixes of the rotors and the casings need not be combined
into a large matrix; therefore, the computation efficiency is
improved greatly.

3. Looseness Fault Analysis

3.1. Dynamic Model Parameters. The finite element parame-
ters of the rotor, the casing, and the connection parameters of
rotor-casing-bearing system are shown in Tables 1, 2, 3, 4, 5,
6, and 7.

3.2. Calculation Condition

(1) The looseness fault between the bearing housing
and the casing in a horizontal and vertical direction
is considered, and their looseness amounts are all
1.0 𝜇m.

(2) The looseness fault in the fan fulcrum and the front
compressor fulcrum is considered.

(3) The output is the casing horizontal and the vertical
vibration acceleration response in front of compressor
fulcrum.

(4) The speed range is 10000–30000 rpm.

3.3. Critical Speed Analysis. Figure 5 shows the amplitude-
speed curves of the bearing housing 𝑆

1
lateral acceleration,

the casing lateral acceleration at the ninth node, and the
compressor rotor lateral displacement at the first node under
imbalance fault. As can be seen from the figures, the first-
order and the second-order critical speeds are 17300 rpm and
18500 rpm, respectively.

3.4. Autocorrelation Method. Autocorrelation technology
can be used in signal filter when the signal is weak and
sound energy is large, which is effective to detect weak
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Table 2: Parameters of rotors.

Parameters Disk 𝑃
1

Disk 𝑃
2

Disk 𝑃
3

Disk 𝑃
4

Disk 𝑃
5

Mass𝑚
𝑝
(kg) 3.88 1.41 5.17 10.28 10.28

Cross-polar inertia 𝐽
𝑝𝑑

(kg⋅m2) 0.03 0.003 0.03 0.05 0.05
Cross-equator inertia 𝐽

𝑑𝑑
(kg⋅m2) 0.015 0.0015 0.015 0.025 0.025

Elastic modulus 𝐸 (Pa) 2.07 2.07 2.07 2.07 2.07
Poisson’s ratio 𝜇 0.3 0.3 0.3 0.3 0.3
Density 𝜌 (kg/m3) 7.8 × 103 7.8 × 103 7.8 × 103 7.8 × 103 7.8 × 103

Proportion damping ratio 𝛼
0

5 5 5 5 5
Proportion damping ratio 𝛼

1
1.35 1.35 1.35 1.35 1.35

Table 3: Parameters of casings.

Wall thickness/mm Elastic modulus
𝐸 (Pa)

Density 𝜌
(kg/m3) Poisson’s ratio 𝜇 Proportion

damping ratio 𝛼
0

Proportion
damping ratio 𝛼

1

15 2.07 × 1011 7.8 × 103 0.3 5 1.35 × 10−5

Table 4: Parameters of ball bearing.

Rolling
bearing

Outer raceway
radius 𝑅/mm

Inner raceway
radius 𝑟/mm

Ball number
𝑁
𝑏

Contact stiffness
𝐶
𝑏
/(N/m3/2)

Bearing
clearance 𝑟

0
/um

Outer mass𝑚
𝑤

(kg)
Bearing carrier
mass𝑚

𝑏
(kg)

𝐵
1

39.5 29 13 12.4 × 109 0 2 10
𝐵
2

39.5 29 13 12.4 × 109 0 2 10
𝐵
3

32 17 14 11.9 × 109 0 2 10
𝐵
4

32 17 14 11.9 × 109 0 2 10

Table 5: Support parameters of rotor-casing.

Supports Node of rotor Casing (node) 𝑘
𝑡
(N/m) 𝑐

𝑡
(N⋅s/m) 𝑘

𝑓
(N/m) 𝑐

𝑓
(N⋅s/m)

𝑅𝐶
1

3 2 1 × 108 2000 1 × 108 1000
𝑅𝐶
2

1 9 1 × 108 2000 1 × 108 1000
𝑅𝐶
3

11 16 1 × 108 2000 1 × 108 1000
𝑅𝐶
4

8 22 1 × 108 2000 1 × 108 1000

Table 6: Spring collection parameters of rotor-casing.

Collection Node of rotor Casing (node) 𝑘
𝑔𝑥

(N/m) 𝑐
𝑔𝑥

(N⋅s/m) 𝑘
𝑔𝑦

(N/m) 𝑐
𝑔𝑦

(N⋅s/m)
𝑅𝐶
1

6 4 1 × 108 0 1 × 108 0

Table 7: Collection parameters of casing-base.

Supports Node of
rotor

Casing
(node) 𝑘

𝑡
(N/m) 𝑐

𝑡
(N⋅s/m) 𝑘

𝑓
(N/m)

𝐶𝐵
1 8 1 × 109 1 × 105 2000 0

𝐶𝐵
2 23 1 × 109 1 × 105 2000 0

periodic signal ingredients in the rotor system and extract
the interested frequency components andmultiple frequency
components.

Because the aeroengine rotor vibration signal is peri-
odic, autocorrelation time domain monitoring method can
improve the ability of monitoring weak periodic signal effec-
tively under the condition of the sinusoidal signal frequency
position. The periodic signal which is buried in noise can

be extracted and the detected signal amplitude has higher
precision. The steps are described as follows.

(1) Intercepting 2𝑁 points from stationary random sig-
nal 𝑥(𝑛), 𝑥

2𝑁
(𝑛) can be obtained and then using FFT

to it, thus𝑋
2𝑁
(𝑘) can be obtained.

(2) Dividing the square of the amplitude of𝑋
2𝑁
(𝑘) by𝑁,

thus 

𝑋
2𝑁
(𝑘)





2

/𝑁 can be obtained.

(3) Using IFFT in 

𝑋
2𝑁
(𝑘)





2

/𝑁, its correlation function
can be obtained.

3.5. Characteristics of the Bearing Housing 𝑆
1
Acceleration

Response, the Casing Acceleration Response, and the Rotor
Displacement under the Asymmetric Stiffness Model. Figure 6
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Figure 4: Solving flow for rotor-support-casing coupling dynamics.
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Figure 5: Amplitude-speed curves of bearing, casing lateral acceleration, and rotor displacement (without looseness).

shows cascade plot of the bearing housing 𝑆
1
lateral accel-

eration response at different speeds; Figure 7 shows cascade
plot of the casing lateral acceleration response at the ninth
node at different speeds; Figure 8 shows cascade plot of the
compressor rotor lateral displacement at the first node at

different speeds, according to the asymmetric stiffness equa-
tion (11). Figure 6 shows that subharmonic resonance appears
under the high speed and superharmonic resonance appears
when the speed is higher than the second-order critical speed.
Comparing Figures 6–8, we find that the multiple frequency
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Figure 6: Cascade plot of the bearing housing acceleration response at different speeds.
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Figure 7: Cascade plot of the casing acceleration response at different speeds.

components of the bearing housing 𝑆
1
acceleration response

and the casing acceleration is obvious than the multiple
frequency components of the rotor displacement response.

Figures 9, 10, and 11 show time domain waveform and
spectrum of casing acceleration response at the speeds of
19500 rpm, 26000 rpm, and 30000 rpm, which are obtained
before and after the noise reduction of autocorrelation.
As can be seen from the figures, there are many multiple
frequency components and dividing frequency components,
which are caused by the looseness fault; the waveforms after
the noise reduction of autocorrelation have a typical shock
characteristic with the waveform of truncated shape, which is
longitudinal asymmetrical one. The casing acceleration time
domain waveforms could determine the characteristics of the
looseness fault.

Figure 12 shows cascade plot of the bearing housing 𝑆
1

lateral acceleration response at different speeds, according
to the symmetric stiffness equation (12). As can be seen
from the figures, there are not many multiple frequency
components and the looseness fault characteristics would
not be obvious. Figure 13 shows the time domain waveform
and the spectrum of casing acceleration response at the
speed of 25000 rpm, which is obtained before and after the

noise reduction of autocorrelation. As can be seen from the
figures, the spectrum of acceleration response appears double
frequency, caused by the looseness fault. As can be seen
from the figures, the shock characteristics are not obvious,
without the waveform of truncated shape, andmanymultiple
frequency components could not be seen from the spectrum
diagram.

3.6.The Influence of the Looseness Stiffness between the Bearing
Housing 𝑆

1
and the Casing. In order to study the influence

of looseness stiffness on the whole aeroengine vibration, the
compressor looseness stiffness between the bearing housing
𝑆
1
and the casing is reduced by two times and increased by

two times, respectively, and the characteristics of the casing
acceleration signal are analyzed.

Figure 14 shows cascade plot of the casing lateral accel-
eration response at different speeds according to the asym-
metric stiffness equation (11), when the looseness stiffness
𝑘
𝑓1

between the compressor bearing housing 𝑆
1
and the

casing is reduced by two times. As can be seen from the
figures, there are many multiple frequency components and
dividing frequency components, which are caused by the
looseness fault. Figure 15 shows time domain waveform and
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Figure 8: Cascade plot of the rotor displacement response at different speeds.
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Figure 9: Time domain waveform and frequency spectrum before and after the noise reduction when the rotating speed is 19500 rpm.
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Figure 10: The time domain waveform and frequency spectrum before and after the noise reduction when the rotating speed is 26000 rpm.

spectrum of casing acceleration response at the speed of
17000 rpm, which is obtained before and after the noise
reduction of autocorrelation. As can be seen from the figures,
the waveforms after the noise reduction of autocorrelation
have a typical shock characteristic, with the waveform of
truncated shape, which is longitudinal asymmetrical one.The
looseness fault would be judged by the casing acceleration
time domain waveforms.

Figure 16 shows cascade plot of the casing lateral acceler-
ation response at different speeds according to the asym-
metric stiffness equation (11), when looseness stiffness 𝑘

𝑓1

between the compressor bearing housing 𝑆
1
and the casing

is increased by two times. As can be seen from the figures,
there are many multiple frequency components and dividing
frequency components, which are caused by the looseness
fault. Figure 17 shows the time domain waveform and
spectrum of the casing acceleration response at the speed
of 21000 rpm, which is obtained before and after the noise
reduction of autocorrelation. As can be seen from the figures,

the waveforms have the characteristic that is a typical shock
characteristic, with the waveform of truncated shape, which
is longitudinal asymmetrical one. As can be seen from the
influence of support stiffness on the looseness fault charac-
teristic, different support stiffness has little effect on the time
domain characteristic of the looseness fault, but there is some
difference in spectrum; namely, the higher support stiffness
will produce much higher multiple frequency components.

4. Verification and Analysis of the Real Trial
Running Data

Figure 18 shows cascade plot of the real trial running data.
The measuring points are the compressor casing horizontal
and vertical direction of the compressor fulcrum. As can be
seen from the figures, there are many multiple frequency
components and dividing frequency components. Figures 19,
20, and 21 show time domain waveform and spectrum of
the casing acceleration response at the speeds of 24000 rpm,
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Figure 11: The time domain waveform and frequency spectrum before and after the noise reduction when the rotating speed is 30000 rpm.

0 2 4 6 8 10

1
1.2

1.4
1.6

1.8
2
0
5

10
15

Ca
sin

g 
ac

ce
le

ra
tio

n
re

sp
on

se
 (g

)

Orders

×
10 4

Speed
n
r (rpm

)

(a) Speeds from 10000 rpm to 20000 rpm

0 2 4 6 8 10

2

2.2

2.4

2.6

2.8
3
0

1

2

3

Ca
sin

g 
ac

ce
le

ra
tio

n
re

sp
on

se
 (g

)

Orders

×
10 4

Speed
n
r (rpm

)

(b) Speeds from 20000 rpm to 30000 rpm

Figure 12: Cascade plot of the casing acceleration response at different speeds.



12 Shock and Vibration

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.0180.02

0

1

2

3

4

−1

−2

−3

−4

−5

−6

Time (s)

Ac
ce

le
ra

tio
n 

(g
)

(a) The waveform before the noise reduction

Time (s)

Ac
ce

le
ra

tio
n 

(g
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

0.5

1

1.5

2

2.5

−0.5

−1

−1.5

−2

(b) The waveform after the noise reduction

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency (Hz)

Ac
ce

le
ra

tio
n 

(g
) 1×

2×

(c) The spectrum before the noise reduction

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Frequency (Hz)

Ac
ce

le
ra

tio
n 

(g
)

2×

1×

(d) The spectrum after the noise reduction

Figure 13: The time domain waveform and frequency spectrum before and after the noise reduction when the rotating speed is 25000 rpm.
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Figure 14: Cascade plot of the casing acceleration response at different speeds.
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Figure 15: The time domain waveform and frequency spectrum before and after the noise reduction when rotating speed is 17000 rpm.
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Figure 16: Cascade plot of the casing acceleration response at different speeds.
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Figure 17: The time domain waveform and frequency spectrum before and after the noise reduction when rotating speed is 21000 rpm.
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Figure 18: Cascade plot of casing acceleration response at different measuring points.
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Figure 19: The time domain waveform and frequency spectrum before and after the noise reduction when rotating speed is 24000 rpm.

27000 rpm, and 29000 rpm, respectively, which is obtained
before and after the noise reduction of autocorrelation. As
can be seen from the figures, the time domain waveform
characteristics before the noise reduction of autocorrelation
are not obvious; however, the waveforms after the noise
reduction of autocorrelation have a typical shock charac-
teristic with the waveform of truncated shape, which is
longitudinal asymmetrical one. The real trial running data
and the decomposition of the engine show that the turbofan
engine presents the bearing outer ring obvious signs of wear
and uneven wear phenomena, which proves the existence of
support looseness. Based on more fault simulation analysis,
only the asymmetric stiffness of the looseness fault excites
the casing acceleration signal, which is very similar to the
real trial running data. Not only are the multiple frequency
characteristics similar in the frequency domain, but also
the waveforms after the noise reduction of autocorrelation
have a typical shock characteristic, with the waveform of
truncated shape, which is longitudinal asymmetrical one. To

some extent, the source of the engine fault is determined by
the support looseness, which indicates that the looseness fault
would be a main fault.

5. Connector Looseness Fault
Experimental Verification

5.1. Connector Looseness Experiment Principle. In order to
verify the nonsynchronous response characteristics of con-
nector looseness fault, the experiment rig with looseness
clearance is established, and the connector looseness exper-
iment is carried out. Figure 22 is the experimental site map
of looseness fault, Figure 23 is the experimental schematic
diagram of looseness fault, and Figure 24 is the experimental
three-dimensional diagram of looseness fault.

Figure 24 shows that the second disk is connected to the
third disk by spring 𝑘

1
, the third disk is connected to vibrating

table by bolts, and the first disk is connected to the third disk
by using three polish rods. Then the first disk, the third disk,
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Figure 20: The time domain waveform and frequency spectrum before and after the noise reduction when rotating speed is 27000 rpm.

and vibrating table will vibrate together.The first disk and the
second disk are connected by spring 𝑘

2
, and the connector

looseness fault is simulated by controlling the clearance.
During the experiment, the first disk, the third disk, and

vibration table vibrate together, and the basement excitation
to the second disk is carried out. When the relative displace-
ment between the second disk and the third disk is smaller,
the spring 𝑘

2
does not connect with the second disk, so

the spring connection stiffness is only 𝑘
1
. When the relative

displacement between the second disk and the third disk is
larger, the spring 𝑘

2
connects with the second disk, so the

spring connection stiffness is 𝑘
1
+ 𝑘
2
.

The energy of vibrating table is input by power amplifier
and the feedback of vibration signals is realized by controlling
the software and the vibration acceleration sensor on the third
disk. The vibration of the vibrating table is controlled at the
designated frequency and amplitude by vibration controller.
The vibration acceleration of the second disk is measured
by the vibration acceleration sensor on the second disk.

The collected digital signals are input into the computer for
preservation by NI USB-9234 capture card.

In order to obtain the vibration performance of the
vibration system, the excitation on vibrating table is applied
by using the linear sine sweep frequency method from 5Hz
to 100Hz, and the looseness fault characteristics at different
frequencies are obtained.

5.2. Looseness Fault Experiment Verification

5.2.1. Analysis of the SecondDisk Response at Different Contact
Forms. In the experiment, the acceleration of the second disk
is measured by three methods; namely, (1) when the second
disk does not contact with the spring 𝑘

2
, the second disk only

contacts with the third disk through spring 𝑘
1
, the vibration

system is a linear system, and the experiment result is shown
in Figure 25(a); (2) when the second disk always contacts with
the spring 𝑘

2
, the second disk contacts with the third disk and

the first disk through spring 𝑘
1
and 𝑘
2
, the vibration system is



Shock and Vibration 17

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

10

20

30

40

50

Time (s)

Ac
ce

le
ra

tio
n 

(g
)

−60

−50

−40

−30

−20

−10

(a) The waveform before the noise reduction

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

−15

−10

−5

0

5

10

15

20

25

30

Time (s)

Ac
ce

le
ra

tio
n 

(g
)

−20

(b) The waveform after the noise reduction

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

Ac
ce

le
ra

tio
n 

(g
)

Frequency (Hz)

1 ×

2×

(c) The spectrum before the noise reduction

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

Ac
ce

le
ra

tio
n 

(g
)

Frequency (Hz)

1 ×

2×

(d) The spectrum after the noise reduction

Figure 21: The time domain waveform and frequency spectrum before and after the noise reduction when the rotating speed is 29000 rpm.

also a linear system, its spring connection stiffness is 𝑘
1
+ 𝑘
2
,

and the experiment result is shown in Figure 25(b); (3) when
there is clearance between the second disk and spring 𝑘

1
, at

different relative vibration displacement between the second
disk and the first disk, the second disk may contact with
spring 𝑘

1
ornot, the vibration system is a nonlinear system,

and the experiment result is shown in Figure 25(c).
Figure 25(a) shows that when the second disk does not

contact with the spring 𝑘
2
, the vibration system is a linear

system, and its natural frequency is 14.6Hz. Figure 25(b)
shows that when the second disk always contacts with the
spring 𝑘

2
, the vibration system is also a linear system, and its

spring connection stiffness is 𝑘
1
+ 𝑘
2
, so its natural frequency

is 51.22Hz. When there is looseness clearance, the second
disk may contact with spring 𝑘

1
or not. When the vibration

displacement is large, the second disk will contact spring 𝑘
2

only half period in a movement period. At this time, the
natural frequency of the system is [18]

1

𝑓
𝑛

=

1

2

(

1

𝑓
1

) +

1

2

(

1

𝑓
2

) . (14)

According to (14), the calculated result 𝑓
𝑛
is 22.7Hz, and

the experimental result is 22.2Hz, shown in Figure 25(c).
Obviously, the analysis results are verified fully.

5.2.2. Analysis of Looseness Characteristics. Figure 26 is
three-dimensional cascade plot of the second disk vibration
acceleration changingwith excitation frequency and response
frequency. Figure 26 shows that the frequency multiplication
appears when excitation frequency is 1/2𝑓

𝑛
, 1/2 frequency

division appears when excitation frequency is 2𝑓
𝑛
, and 1/3

frequency division appears when excitation frequency is 3𝑓
𝑛
.
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Figure 22: The experimental site map of looseness fault.
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Figure 24: Experimental three-dimensional diagram of looseness fault.
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Figure 25: The response of the second disk under different contact conditions.
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Figure 26: Cascade plot of the second disk response.
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Figure 27: Waveform and frequency spectrum before and after the noise reduction when frequency is 1/2𝑓
𝑛
.

Figure 27 shows time domain waveform and spectrum
of the second disk when the excitation frequency is 12.5Hz,
which is obtained before and after the noise reduction of
autocorrelation. As shown in Figure 27, when the excitation
frequency is equal to 1/2𝑓

𝑛
, the larger double frequency com-

ponents appeared, that is, the natural frequency of the system;
the waveforms after the noise reduction of autocorrelation
have a typical shock characteristic with the waveform of
truncated shape, which is longitudinal asymmetrical one.

Figure 28 shows time domain waveform and spectrum of
the second diskwhen the excitation frequency is 45Hz,which
is obtained before and after the noise reduction of autocor-
relation. As shown in Figure 28, when the frequency of the
vibration table is equal to 2𝑓

𝑛
, the larger 1/2 dividing fre-

quency components appeared, that is, the natural frequency
of the system; the waveforms after the noise reduction of
autocorrelation have a typical shock characteristic with the

waveform of truncated shape, which is longitudinal asym-
metrical one.

Figure 29 shows time domain waveform and spectrum
of the second disk when the excitation frequency is 80Hz,
which is obtained before and after the noise reduction of
autocorrelation. As shown in Figure 29, when the frequency
of the vibrating table is about 3𝑓

𝑛
, the larger 1/3 dividing

frequency components appeared, that is, the natural fre-
quency of the system; the waveforms after the noise reduction
of autocorrelation have a typical shock characteristic, with
the waveform of truncated shape, which is longitudinal
asymmetrical one.

By comparison, in different frequencies of the vibrat-
ing table, for connector looseness fault, the acceleration
waveforms after the noise reduction of autocorrelation have
the characteristic that is a typical shock characteristic, with
the waveform of truncated shape, which is longitudinal
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Figure 28: Waveform and frequency spectrum before and after the noise reduction when frequency is 2𝑓
𝑛
.

asymmetrical one, which could be identified as the wave-
forms after the noise reduction of autocorrelation have a
typical shock characteristic, of the looseness fault.

6. Conclusion

In this paper, certain type turbofan engine whole vibration
model with support looseness fault is established and casing
acceleration response is obtained. Some results are obtained
as follows.

(1) Aiming at certain type turbofan engine, the dynamic
model with the looseness fault is established. The
nonlinear rolling bearing is considered in the model.
A variety of support connections are used, that is, the
support connection between the casing and the rotor;
the coupling connection between two rotors; and the
elastic connection between the rotor and the casing.

(2) The looseness models of asymmetric stiffness and
symmetric stiffness are established. The looseness
fault exists between the bearing and the casing.
Numerical simulation method is used to obtain the
engine casing acceleration response under the loose-
ness fault.

(3) The simulation results are comparedwith the real trial
running vibration signals and connector looseness
fault experiment, and the simulated fault character-
istics are very similar with the real trial running
vibration characteristics and the connectors looseness
characteristics.Thewaveforms have the characteristic
that is a typical shock characteristic, with the wave-
form of truncated shape, which is longitudinal asym-
metrical one, and there are many multiple frequency
components and dividing frequency components,
which could provide a qualitative judgment of the
support looseness fault for the engine fault diagnosis.
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Figure 29: Waveform and frequency spectrum before and after the noise reduction when frequency is 3𝑓
𝑛
.

In addition, the comparison results of the simulation
and the real trial running vibration signals also show
the validity of the asymmetric stiffness looseness
model.
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