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Asynchronous Vibration
Response Characteristics
of Aero-Engine With Support
Looseness Fault
In this paper, the mechanism of the asynchronous vibration response phenomenon caused
by the looseness fault in the aero-engine whole vibration system is investigated by numer-
ical integration methods. A single degree-of-freedom (DOF) lumped mass model and a
rotor-casing whole vibration model of a real engine are established, and two looseness
fault models are introduced. The response of these two systems is obtained by numerical
integration methods, and the asynchronous response characteristics are analyzed. By
comparing the response of a single DOF lumped mass model with the response of multi-
ple DOF model, the reason leading to the asynchronous response characteristics is the
relationship between the changing period of stiffness and the changing period of the rota-
tional speed. When the changing period of stiffness is equivalent to the changing period
of the rotational speed, frequency multiplication will appear and the natural frequency
will be excited at specific speeds. When the changing period of stiffness is equivalent to n
(n¼ 2, 3,…) times the changing period of the rotating speed, 1/n (n¼ 2, 3,…) frequency
division and frequency multiplication will appear and the natural frequency will be
excited at specific speeds. [DOI: 10.1115/1.4031245]

Keywords: asynchronous response characteristics, looseness fault, looseness character-
istics, dynamical model, whole vibration modeling

1 Introduction

Due to the low bearing stiffness in aero-engine, the wide use of
thin-walled structure in rotor and casing, its great flexibility,
looseness phenomenon is universal. An unforeseen array of asyn-
chronous response frequencies at other than the critical was noted
when the aero-engine was operated at both subcritical and super-
critical speeds. However, those responses were not explored in
detail at the time. To understand the essence of looseness fault
better, the analysis of asynchronous response characteristics is of
great significance.

Many scholars have studied the looseness fault based on
lumped mass model. Ehrich [1] used a simple numerical model of
a rotor employing a piecewise linear (that is, a bilinear) bearing
support stiffness to represent the system, it was possible to repli-
cate the new class of asynchronous rotor dynamic response in
high-speed rotors over a range of sub-, trans-, and supercritical
high-speed rotor operation. Muszynska et al. [2] established a
rotor-bearing-stator model with a one-lateral-mode unbalanced,
bearing looseness, and rotor–stator rubbing, showing the nonlinear
characteristics of the periodic vibrations of synchronous (1�),
subsynchronous (1/2�, 1/3�…), and multiples (2�, 3�…).
Yushu and Shihai [3] adopted a new method to study the sub/
superharmonic resonance of nonlinear system with single DOF
and subharmonic solution of a piecewise linear oscillator with two
DOF. Chu and Tang [4] investigated the vibration characteristics
of a rotor-bearing system with pedestal looseness, used the shoot-
ing method to obtain the periodic solutions, and analyzed the
steady of the periodic solutions by the Floquet theory. Guo [5]
established an unbalance-rubbing coupling faults dynamic model

with rolling bearing-rotor system and obtained the nonlinear
dynamic response laws of rotor-ball bearing-stator system under
unbalance and rubbing coupling fault. Goldman and Muszynska
[6] developed an analytical algorithm for investigating local non-
linear effects in rotor systems. They used a specially developed
variable transformation that smoothes discontinuities, and then
they applied an averaging technique. Their results showed good
agreement with experimentally observed typical behaviors and
orbits of rubbing rotors. In the last two papers, the effects of ped-
estal looseness on the system response were also studied. Lu and
Chu [7] studied the looseness fault of rotor system by experi-
ments. The characteristics of multiple frequency and frequency
division were found. Ji and Zu [8] analyzed the free and forced
vibration of a nonlinear bearing system to illustrate the nonlinear
effect on the free and forced vibrations of the system by the
method of multiple scales. Method multiple scales were used to
study the superharmonic resonance and the subharmonic reso-
nance [9,10]. Lu et al. [11] analyzed the stability of reduced rotor
pedestal looseness fault model. In all the previous studies, experi-
ments, nonlinear dynamics analysis, and characteristics analysis
based on lumped mass model with looseness fault are performed
gradually. However, the asynchronous response phenomenon has
not been discussed fully and the results of the lumped mass model
are different from that of the real aero-engine model.

In recent years, the finite element method has been used to es-
tablish looseness fault model by many scholars. Ma et al. [12]
studied the nonlinear vibration characteristics of a rotor system
with pedestal looseness fault under different loading conditions.
Behzad and Asayeshthe [13] proposed a finite element method for
studying the effects of loose rotating disks on the rotor-bearing
systems’ response. Ma et al. [14] established a finite element
model of a rotor system with pedestal looseness stemming from a
loosened bolt, and the effects of the looseness parameters on its
dynamic characteristics were analyzed. Wang and Chen [15]
established a rotor-support-casing whole model with looseness
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fault for certain type turbofan aero-engine. The casing accelera-
tion response characteristics were analyzed. However, the
asynchronous response characteristics were not studied deeply.

At present, many models with looseness fault are based on
lumped mass model and finite element model without regard to
the structure of real aero-engine. Many works cannot give bright
and new explanation about the mechanism of the pseudocritical
subharmonic resonance and the pseudocritical ultraharmonic reso-
nance caused by the looseness fault. In this paper, lumped mass
model and the finite element model with looseness fault are estab-
lished, and the asynchronous vibration response characteristics are
discussed by numerical integration methods.

2 A Single DOF Lumped Mass Model With Looseness

Fault

2.1 A Single Disk-Rotor Model. The differential equations
of the unbalance response of a single disk mounted on a massless
shaft can be described as follows:

m€u þ c _u þ ku ¼ mex2 cos xt
m€v þ c _v þ kv ¼ mex2 sin xt

�
(1)

where u and v are the radial displacements of the rotor, m is the
mass of the disk, c is the viscous damping, k is the transverse stiff-
ness of the shaft, e is eccentricity, and x is rotational speed of the
rotor.

2.2 A Foundation Looseness Model. In order to study the
mechanism of the looseness fault between the component and the
foundation, a simple mass-spring model is established, the loose-
ness fault between the component and foundation is considered,
and the mass block is always connected with the foundation, as
shown in Fig. 1.

It is assumed that the mass of mass block is m, the contact stiff-
ness between the mass block and the foundation is k2, the damping
is c, the contact stiffness between the mass block and the hard
spring is k1, the looseness clearance is d, the vibration displace-
ment of the mass block is x1, and the vibration displacement of
the foundation is x2.

The differential equation of the mass block under the founda-
tion vibration can be described as follows:

m€x1þ cð _x1� _x2Þþ k2ðx1�x2Þ¼ 0ðx1�x2� dÞ
m€x1þ cð _x1� _x2Þþ k2ðx1�x2Þþk1ðx1�x2�dÞ¼ 0ðx1�x2 > dÞ

�
(2)

It is assumed that vibration frequency of the foundation is f, the
amplitude is A, so that the vibration displacement of the founda-
tion x2 ¼ A sinð2pftÞ; the relative displacement between the mass
block and the foundation x¼ x1-x2; when the looseness clearance
is smaller, the relative motion equation can be described as
follows:

m€x þ c _x þ kx ¼ m€x2 (3)

Since the second formula of Eq. (1) is similar to Eq. (3), and the
looseness fault has directivity, which means the vibration in u
direction and in v direction are separable, Eq. (3) can be used to
simulate the single disk-rotor model with looseness fault. The rel-
ative displacement x can be used to simulate the displacement of
rotor, and the relative acceleration €x can be used to simulate the
acceleration of rotor.

Then, the natural frequency of the hard spring f1 ¼ ðk2=mÞ1=2

and the natural frequency of the soft spring f2 ¼ ðk1=mÞ1=2
. It is

assumed that the natural frequency of the system is fn; the clear-
ance d is smaller, the vibration time is very short, and it can be
ignored, so that the vibration period of this system is half of the
sum of the vibration period of the hard spring and the soft spring,
it can be described as follows:

1

fn
¼ 1

2

1

f1

� �
þ 1

2

1

f2

� �
(4)

2.3 Simulation Analysis of Looseness Fault. For studying
the strong nonlinear characteristics caused by the looseness fault,
smaller damping and larger stiffness are adopted. It is assumed
that the mass of the mass block m¼ 10 kg, the vibration amplitude
of the foundation A¼ 100 lm, the damping between the mass
block and the foundation c¼ 20 N s/m, the contact stiffness
k2¼ 9.85� 105 N/m, and the contact stiffness k1 between the mass
block and the hard spring is 100k2. The natural frequency of this
system, according to Eq. (4), fn¼ 90.9 Hz.

Since numerical calculation methods are the effective way to
solve strong nonlinear differential equation, the response of this
system can be solved by the improved Newmark-b algorithm
[16]. When the hard spring is contacted, the contact condition is
marked 1, and when the soft spring is contacted, the contact
condition is marked 0.

The results are shown in Figs. 2 and 3, when the vibration
frequencies are 1/2fn and 1/3fn, respectively. In Fig. 2(a), the
waveform of relative displacement has two bounces and two
peaks per revolution. Figure 2(b) is from literature [1] and the
nondimensional method was used in the parameter y. In Fig. 2(c),
the rotational frequency and the larger double frequency appear in
the spectrum of the relative displacement. In Figs. 2(d) and 2(f),
the acceleration and the relative acceleration of the mass block
have two bounces per rotation. In Fig. 2(e), the changing period of
stiffness is equivalent to the period of the rotational speed, so that
frequency multiplication appears.

In Fig. 3(a), the waveform of the relative displacement has
three bounces and three peaks per revolution. Figure 3(b) is from
literature [1]. In Fig. 3(c), the rotational frequency, the larger dou-
ble frequency, and the natural frequency of the system appear in
the spectrum of the relative displacement. In Figs. 3(d) and 3(f),
the acceleration and the relative acceleration of the mass block
have three bounces per rotation. In Fig. 3(e), the changing period
of stiffness is equivalent to the period of the rotational speed, so
that frequency multiplication appears.

As can be seen from Fig. 2 to 3, when the damping is not large
enough and the rotational frequency is equal to 1/J (J¼ 1, 2…),
the natural frequency of system fn, that is, the changing period of
stiffness is equal to the period of the rotational speed, superhar-
monic resonance will appear, which is the rotational frequency, its
harmonic frequencies, and natural frequency. Method of multiple
scales was used to obtain the same results [9,10]; however, the
relationship between the changing period of stiffness and the
changing period of the rotational speed was not investigated.

The results are shown in Figs. 4–6 when the rotational frequen-
cies are 2/5fn, 3/7fn, and 4/9fn, respectively. In Fig. 4(a), the wave-
form of the displacement has five bounces and five peaks every
two revolutions. In Fig. 4(b), the rotational frequency, the largerFig. 1 Mass and foundation looseness model sketch
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asynchronous frequency, and the natural frequency of the system
appear in the spectrum of the displacement. Figures 4(c) and 4(d)
are from literature [1]. In Fig. 4(e), the changing period of stiff-
ness is equivalent to twice the period of the rotational speed, so
that 1/2� appears. In Fig. 4(f), the waveform of the acceleration
of the rotor has five shocks every two rotations.

In Fig. 5(a), the waveform of the displacement has seven boun-
ces and seven peaks every three revolutions. In Fig. 5(b), the rota-
tional frequency, the larger asynchronous frequency, and the
natural frequency of the relative displacement appear in the spec-
trum. Figures 5(c) and 5(d) are from literature [1]. In Fig. 5(e), the
changing period of stiffness is equivalent to three times the period
of the rotational speed, so that 1/3� appears. In Fig. 5(f), the
waveform of the acceleration of the rotor has seven shocks every
three rotations.

In Fig. 6(a), the waveform of the displacement has nine boun-
ces and nine peaks every four revolutions. In Fig. 6(b), the rota-
tional frequency, the stronger asynchronous frequency, and the
natural frequency of the displacement appear in the spectrum.
Figures 6(c) and 6(d) are from literature [1]. In Fig. 6(e), the
changing period of stiffness is equivalent to four times the period
of the rotational speed, so that 1/4� appears. In Fig. 6(f), the
waveform of the acceleration of the rotor has nine shocks every
four rotations.

As can be seen from Fig. 4 to 6, when the damping is not large
enough and the rotational frequency is equal to J/(2Jþ 1), (Jþ 1)/
(2Jþ 1), and (2J-1)/(2J) (J¼ 2, 3…), the natural frequency of sys-
tem, that is, the changing period of stiffness is equal to n times the
period of the rotational speed, the rotational frequency, frequency
division, and natural frequency will appear. Method of multiple
scales was used to obtain the same results [9]; however, the rela-
tionship between the period of stiffness and the period of the rota-
tional speed was not investigated. Literature [1] only provided the
phenomenon of frequency division and frequency multiplication;
however, the cause of this phenomenon was not explained.

The cascade plot of rotor acceleration at the subcritical speeds
is shown in Fig. 7. The Campbell diagram from literature [1] is
shown in Fig. 8. As can be seen from Fig. 7, the looseness fault
characteristics are shown as the crossed streaks in the cascade
plot, which are the asynchronous response frequencies. When the
rotational frequencies are 1/4fn, 1/3fn, and 1/2fn, frequency multi-
plication will appear. When the rotational frequency is 2/3fn, 1/2�
and the frequency multiplication will appear. When the rotational
frequency is 3/4fn, 1/3�, 2/3� and the frequency multiplication
will appear. Such similar phenomenon also appears at the
transcritical and supercritical speeds. The quasi-period, bifurca-
tion, and chaos will appear, when the rotational speed is not at the
subcritical speeds of the paper described.

Fig. 2 Waveform characteristics at 1/2 times the natural frequency; (a) waveform, (b) waveform
(the result of Literature [1]), (c) spectrum, (d) waveform, (e) waveform, and (f) waveform

Fig. 3 Waveform characteristics at 1/3 times the natural frequency; (a) waveform, (b) waveform
(the result of Literature [1]), (c) spectrum, (d) waveform, (e) waveform, and (f) waveform
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Fig. 4 Waveform characteristics at 2/5 times the natural frequency; (a) waveform, (b) spectrum,
(c) waveform (the result of Literature [1]), (d) spectrum (the result of Literature [1]), (e) wave-
form, and (f) waveform

Fig. 5 Waveform characteristics at 3/7 times the natural frequency; (a) waveform, (b) spectrum,
(c) waveform (the result of Literature [1]), (d) spectrum (the result of Literature [1]), (e) wave-
form, and (f) waveform

Fig. 6 Waveform characteristics at 4/9 times the natural frequency; (a) waveform, (b) spectrum,
(c) waveform (the result of Literature [1]), (d) spectrum (the result of Literature [1]), (e) wave-
form, and (f) waveform
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3 A Dynamic Model for Real Engine

3.1 The Structure Sketch Map for Real Engine. Rotor-
bearing-Casing structure sketch map for real engine is shown
in Fig. 9. The symbols in Fig. 9 are described as follows: the
P1 denotes fan disk, the P2 denotes motor disk, the P3 denotes
compressor disk, the P4 denotes the first turbine disk, the P5

denotes the second turbine disk, the C1 denotes the intermedi-
ate casing, the G1 denotes the gear coupling between the fan
shaft and the transmission shaft, the G2 denotes the gear cou-
pling between the transmission shaft and the compressor shaft,
the G3 denotes the gear coupling between the compressor shaft
and the turbine shaft, the S1 denotes the fan support bearings,
the S2 denotes the compressor front support bearings, S3

denotes the compressor rear support bearings, S4 denotes the
turbine support bearings, the I1 denotes the front installation
node, the I2 denotes the back installation node, kg is the mesh
stiffness of a gear pump, kf1, kf2, kf3, and kf4 are the support
stiffness between the rotor and the casing, kc is the connection
stiffness between the casing and the base, and T1 is the com-
pressor front measure point. In order to consider the strong
nonlinearity caused by looseness fault, linear spring is adopted
in support system (S1, S2, S3, and S4) without regard to the
nonlinearity caused by rolling element.

3.2 Dynamic Model. The finite element model is used in the
rotor models and the casing models. The rotors are coupled with
other rotors and casings by forces and moments, its concrete mod-
eling method is according to literature [15,17,18].

The rotor system’s motion equation through the element’s
motion equations can be obtained, which is

ðMsÞ€qs þ ðCs � xGsÞ _qs þKsqs ¼ Qs (5)

where Qs is the generalized external force vector, Ms is the mass
matrix, Gs is gyroscopic matrix, Ks is the stiffness matrix of the
system, and Cs is the damping matrix of the system.

In this paper, Cs is assumed to be proportional damping matrix,
that is, Cs ¼ a0Ms þ a1ks, of which, a0 and a1 are constants.
Because the ith order damping ratio is

ni ¼
1

2

a0

xi
þ a1xi

� �
(6)

Obviously, after any two natural frequencies and damping
ratios of the rotor are acquired by modal experiment, a0 and a1

can be solved through Eq. (6), and the system’s damping ratio
matrix Cs can be obtained.

3.2.1 The Support Looseness Model. kf0 is assumed to be the
equivalent stiffness between the rotor and the casing. Under
the condition of relative displacement, piecewise linear between
the rotor and the casing is considered in this paper, and the loose-
ness fault model of a singe disk-rotor model is used in this paper.
According to Eq. (3), the piecewise nonlinear stiffness kf ¼ can
be expressed as

kf ¼
kf0=3 ðxr � xc > 0Þ
20kf0 ðxr � xc < 0Þ

(
(7)

where xr is the displacement of the rotor and xc is the displacement
of the casing. The looseness fault in horizontal is considered, and
assuming that if the hard spring is contacted, the contact condition
is marked 1, and if the soft spring is contacted, the contact condi-
tion is marked �1.

3.3 Solution of Finite Element Rotor-Casing Coupling
Dynamic Model. Because the number of DOF in the finite ele-
ment rotor-support-casing coupling dynamic model is very large,
in addition, there are a lot of strong nonlinear factors, the implicit
Newmark-b method is used to solve system’s responses. This
finite element rotor-casing coupling dynamic solution procedure
is shown in Fig. 10.

4 Looseness Fault Analysis

4.1 Dynamic Model Parameters. The finite element parame-
ters of the rotor and the casing can be found in Ref. [15] and the
connection parameters of rotor-casing system are shown in Table
1. In this paper, a0 ¼ 5, a1 ¼ 1:35� 10�5, elastic modulus is
E¼ 2.07� 1011 Pa, density is q¼ 7.8� 103 kg/m3, and Poisson’s
ratio is l¼ 0.3.

4.2 Calculation Condition

(1) The looseness fault at the fan support in a horizontal direc-
tion is considered.

(2) The output is the casing horizontal vibration acceleration
response in front of compressor fulcrum.

(3) The speed range is 15,000–70,000 rpm.

4.3 Critical Speed Analysis. Figure 11 shows the amplitude-
speed curves of the casing lateral acceleration at the ninth node
under imbalance fault. As can be seen from Fig. 11, the first-
order, the second-order, and the third-order critical speeds are
26,400 rpm, 52,200 rpm, and 66,900 rpm, respectively.

4.4 Characteristics of Casing Acceleration at Different
Speeds. Figure 12 shows cascade plot of the compressor rotor lat-
eral displacement at the first node at different speeds. As can be
seen from Fig. 12, when the rotational speed is around the first

Fig. 7 Cascade plot showing under subcritical speeds
Fig. 8 Campbell diagram showing inferred generalized sub-
critical, transcritical, and supercritical response
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three order critical speeds, that is 440 Hz, 920 Hz, and 1115 Hz,
larger rotational frequency appears, meanwhile larger superhar-
monic resonance and subharmonic resonance appear. When the
rotational speed is 17,400 rpm, which is 1/3 times the second-order
critical speed, frequency multiplication appears and 3� is larger.
When the rotational speed is 22,200 rpm, which is 1/3 times the
third-order critical speed, frequency multiplication appears and 3�
is larger. When the rotational speed is 27,600 rpm, which is 1/2
times the second-order critical speed, frequency multiplication
appears and 2� is larger. When the rotational speed is 35,250 rpm,
which is 5/4 times the first-order critical speed, frequency multipli-
cation and 3/4� appear. When the rotational speed is 54,750 rpm,
which is two times the first-order critical speed, frequency
multiplication and 1/2� appear. When the rotational speed is
67,350 rpm, which is the third-order critical speed, frequency
multiplication and 1/3� appear.

4.5 Characteristics of Asynchronous Vibration Response
at Specific Rotational Speeds. In order to highlight the period
components of rotational frequency, frequency multiplication, and

frequency division in system, autocorrelation method is used to
denoise the casing acceleration signal.

Figures 13–18 are the results of waveform characteristics
that when the rotational speeds are 17,400 rpm, 22,200 rpm,
27,600 rpm, 35,250 rpm, 54,750 rpm, and 67,350 rpm, respec-
tively. In Figs. 13(a)–13(d), the wave of the casing acceleration
appears three shocks every rotation after the noise reduction of
autocorrelation, and the larger 3� appears in spectrum after the
noise reduction of autocorrelation; In Fig. 13(e), the waveform of

Fig. 9 Rotor-bearing-casing model sketch map of a type of real aeroengine
(unit:mm)

Fig. 10 Solving flow for rotor-casing coupling dynamics

Table 1 Spring collection parameters of rotor casing

Collection
Node of

rotor
Casing
(node)

kt

(N/m)
ct

(N s/m)
kf

(N/m)
cf

(N s/m)

RC1 3 2 1� 108 2000 1� 108 1000
RC2 1 9 1� 108 2000 1� 108 1000
RC3 11 16 1� 108 2000 1� 108 1000
RC4 8 22 1� 108 2000 1� 108 1000
RK1 6 4 1� 108 0 1� 108 0 Fig. 11 Amplitude-speed curve of casing lateral acceleration

(without looseness)
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relative displacement has two bounces and two peaks every revo-
lution, because the damping is larger in this model, the signal
of displacement decays quickly, so the impact of displacement is
not obvious. In Fig. 13(f), the stiffness changes one time every
revolution, that is, the changing period of stiffness equals to the
period of the rotational speed, and thus frequency multiplication
appears.

In Figs. 14(a)–14(d), the wave of the casing acceleration
appears three shocks every rotation after the noise reduction of
autocorrelation, and rotational frequency, the larger 3� and asyn-
chronous frequencies appear in spectrum after the noise reduction
of autocorrelation. In Fig. 14(e), the waveform of relative dis-
placement has two bounces and two peaks every revolution,
because the damping is larger in this model, the signal of displace-
ment decays quickly, so the impact of displacement is not
obvious. In Fig. 14(f), the stiffness changes one time for every
revolution, that is, the changing period of stiffness equals to the
period of the rotational speed, and thus frequency multiplication
appears.

In Figs. 15(a)–15(d), the wave of the casing acceleration
appears two shocks every rotation after the noise reduction of

Fig. 12 Cascade plot of the casing acceleration response
under 15,000–70,000 rpm

Fig. 13 The waveform characteristics at 1/3 times the second-order critical speed; (a) waveform
before noise reduction, (b) waveform after noise reduction, (c) spectrum before noise reduction,
(d) spectrum after noise reduction, (e) waveform, and (f) waveform

Fig. 14 The waveform characteristics at 1/3 times the third-order critical speed; (a) waveform
before noise reduction, (b) waveform after noise reduction, (c) spectrum before noise reduction,
(d) spectrum after noise reduction, (e) waveform, and (f) waveform
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autocorrelation, and rotational frequency and the larger 2� appear
in spectrum after the noise reduction of autocorrelation; In
Fig. 15(e), the waveform of relative displacement has one bounce
every revolution, because the damping is larger in this model, the
signal of displacement decays quickly, so the impact of displace-
ment is not obvious. In Fig. 15(f), the stiffness changes one time
every revolution, that is, the changing period of stiffness equals to
the period of the rotational speed, and thus frequency multiplica-
tion appears.

As can be seen from Figs. 13–15, when the changing period of
stiffness equals to the period of the rotational speed, the pseudoc-
ritical superharmonic resonance appears, and the frequencies
corresponding to the critical speeds will be excited. This phenom-
enon is in agreement with the experiments in literature [10].

In Figs. 16(a)–16(d), the wave of the casing acceleration
appears five shocks every four rotations after the noise reduction
of autocorrelation, and rotational frequency, frequency multiplica-
tion and asynchronous frequencies appear in spectrum after the
noise reduction of autocorrelation. In Fig. 16(e), the waveform of
relative displacement has three bounces every four revolutions,
because the damping is larger in this model, the signal of displace-
ment decays quickly, so the impact of displacement is not

obvious. In Fig. 16(f), the stiffness changes three times every four
revolutions, that is, the changing period of stiffness equals to four
times the period of the rotational speed, and thus 1/4� appears.

In Figs. 17(a)–17(d), the wave of the casing acceleration
appears two shocks every two rotations after the noise reduction
of autocorrelation; the rotational frequency and 1/2� appear in
spectrum after the noise reduction of autocorrelation, because
1/2� is weak, it is not obvious. In Fig. 17(e), the waveform of rel-
ative displacement has two bounces every two revolutions,
because the damping is larger in this model, the signal of displace-
ment decays quickly, so the impact of displacement is not
obvious. In Fig. 17(f), the stiffness changes two times for every
revolution, that is, the changing period of stiffness equals to two
times the period of the rotational speed, and thus 1/2� appears.

In Figs. 18(a)–18(d), the wave of the casing acceleration
appears three shocks for every three rotations after the noise
reduction of autocorrelation; the rotational frequency, 1/3� and
asynchronous frequencies appear in spectrum after the noise
reduction of autocorrelation. In Fig. 18(e), the waveform of rela-
tive displacement has three bounces every three revolutions,
because the damping is larger in this model, the signal of displace-
ment decays quickly, so the impact of displacement is not

Fig. 15 The waveform characteristics at 1/2 times the second-order critical speed; (a) waveform
before noise reduction, (b) waveform after noise reduction, (c) spectrum before noise reduction,
(d) spectrum after noise reduction, (e) waveform, and (f) waveform

Fig. 16 The waveform characteristics at 5/4 times the first-order critical speed; (a) waveform
before noise reduction, (b) waveform after noise reduction, (c) spectrum before noise reduction,
(d) spectrum after noise reduction, (e) waveform, and (f) waveform
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obvious. In Fig. 18(f), the stiffness changes two times for every
three revolutions, that is, the changing period of stiffness equals to
three times the period of the rotational speed, and thus 1/3�
appears.

As can be seen from Figs 16–18, when the changing period of
stiffness equals to n times the period of the rotational speed, the
pseudocritical subharmonic resonance appears, and the frequen-
cies corresponding to the critical speeds will be excited. Method
of multiple scales was applied to the differential equation of a sin-
gle DOF, and the same results were obtained [9,10]; however,
analytic solution of the differential equations of finite element
cannot be obtained and the relationship between the changing
period of stiffness and the changing period of the rotational speed
was not investigated. Numerical calculation for the finite element
model with looseness fault is of great significance.

5 Conclusion

In this paper, a single DOF lumped mass model with looseness
fault and whole vibration model of real engine with looseness
fault are established. Some results are obtained as follows:

(1) A single DOF lumped mass model with looseness fault is
established, the asynchronous response characteristics are
analyzed.

(2) Aiming at real engine, the dynamic model with the loose-
ness fault is established. Numerical simulation method is
used to obtain the engine casing acceleration response. It is
found that the subharmonic resonance and superharmonic
resonance will appear if the rotational speeds are equal to
the fractional order critical speed and the critical speed. At
specific rotational speeds, rotational frequency, frequency
multiplication, and asynchronous frequency appear.

(3) A single disk-rotor model and certain type real engine
whole vibration model with looseness fault were overall
considered, and it is found that the pseudocritical subhar-
monic resonance and the pseudocritical ultraharmonic reso-
nance are caused by the looseness fault. The reason leading
to the asynchronous response characteristics is the relation-
ship between the changing period of stiffness and the
changing period of the rotational speed. When the changing
period of stiffness is equivalent to the changing period of
the rotational speed, frequency multiplication will appear

Fig. 17 The waveform characteristics at two times the first-order critical speed; (a) waveform
before noise reduction, (b) waveform after noise reduction, (c) spectrum before noise reduction,
(d) spectrum after noise reduction, (e) waveform, and (f) waveform

Fig. 18 The waveform characteristics at the third critical speed; (a) waveform before noise
reduction, (b) waveform after noise reduction, (c) spectrum before noise reduction, (d) spec-
trum after noise reduction, (e) waveform, and (f) waveform
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and the natural frequency will be excited at specific speeds.
When the changing period of stiffness is equivalent to n
times the changing period of the rotational speed, 1/n fre-
quency division and frequency multiplication will
appear and the natural frequency will be excited at specific
speeds.
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