硕士学位论文

航空发动机磨损故障多目标智能 融合诊断

研究生姓名	马佳丽
学科、专业	载运工具运用工程
研究方向	航空器监测、诊断与健康管理
指导教师	陈 果 教授

南京航空航天大学

研究生院 民航学院

二〇二三年三月

Nanjing University of Aeronautics and Astronautics The Graduate School College of Civil Aviation

Multi-objective intelligent fusion diagnosis of aeroengine wear fault

A Thesis in Vehicle Operation Engineering by Ma Jiali

Advised by

Prof. Chen Guo

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Engineering

March, 2023

承诺书

本人声明所呈交的硕士学位论文是本人在导师指导下进行 的研究工作及取得的研究成果。除了文中特别加以标注和致谢 的地方外,论文中不包含其他人已经发表或撰写过的研究成果, 也不包含为获得南京航空航天大学或其他教育机构的学位或证 书而使用过的材料。

本人授权南京航空航天大学可以将学位论文的全部或部分 内容编入有关数据库进行检索,可以采用影印、缩.印或扫描等 复制手段保存、汇编学位论文。

(保密的学位论文在解密后适用本承诺书)

作者签名: 马尾网 日期: 2023、3、23

摘要

主轴承和附件传动系统是飞机发动机载荷传动系统的关键部件,其在高速、高温和高负载 的情况下运行,容易发生各种磨损故障。因此,航空发动机轴承和齿轮部件的磨损故障诊断对 于有效实施航空发动机的状态监测和健康管理具有重要的理论意义和实用价值。本文提出了一 种基于多种油液分析数据的航空发动机磨损故障多目标融合诊断的方法,并进行了试验验证和 实际工程应用。论文主要的研究内容如下:

(1)针对多种油液分析数据的特点,建立了航空发动机磨损故障融合诊断方法,实现基于 油液分析数据的航空发动机磨损状态综合评估。该诊断方法包括磨损故障定性分析、定位分析 和定因分析。定性分析以光谱、铁谱和颗粒计数原始分析数据为输入,基于 Dempster-Shafer 证据理论获得发动机磨损故障定性诊断结果;在定位分析部分,建立了基于深度学习的滚动轴 承故障部位识别模型,以能谱分析原始数据作为模型输入,实现了航空发动机磨损部位的智能 识别;最后,在定因分析部分,利用定性结果和定位结果,根据领域专家的经验,建立了基于 if-then 的知识规则,找出发动机磨损故障原因。

(2)针对某型航空发动机附件轴承,进行了轴承全寿命加速疲劳试验,在试验过程中,通过多种油液分析方法对所采集的油样进行分析,获得了不同磨损状态下的多种实际的油液分析 数据,研究了采样技术对油液分析结果的影响规律,得到了用于航空发动机滑油系统专家系统 软件的开发案例。

(3)最后,将本文研究的融合诊断方法应用于与中国航发商用航空发动机有限公司合作开发的航空发动机磨损颗粒智能分析专家系统。应用结果表明,本文的研究成果显著提高了发动机磨损故障智能诊断专家系统的智能化和自动化水平。

关键词: 航空发动机, 磨损故障, 融合诊断, 深度学习, 一维卷积残差网络, 长短期记忆网络

I

ABSTRACT

The main bearing and accessory drive system is a key component of the aircraft engine load transmission system, which operates under high speed, high temperature and high load and is prone to various wear faults. Therefore, the wear fault diagnosis of aero-engine bearing and gear components has important theoretical significance and practical value for the effective implementation of condition monitoring and health management of aero-engine. In this paper, a multi-objective fusion diagnosis method for aero-engine wear faults based on multiple oil analysis data is proposed, and experimental verification and practical engineering applications are carried out. The main research contents of the paper are as follows:

(1)In view of the characteristics of multiple oil analysis data, a fusion diagnosis method for aeroengine wear faults is established to realize a comprehensive assessment of aero-engine wear status based on oil analysis data. The diagnosis method includes qualitative analysis, localization analysis and cause-determining analysis of wear faults. The qualitative analysis takes the raw analysis data of spectra, iron spectra and particle counting as input, and obtains the qualitative diagnosis results of engine wear faults based on Dempster-Shafer evidence theory; in the localization analysis part, a deep learning-based rolling bearing fault part identification model is established, and the raw data of energy spectrum analysis is used as model input to realize the intelligent identification of aero-engine wear parts; finally In the qualitative analysis part, the if-then based knowledge rules are established to find out the causes of engine wear faults based on the experience of domain experts by using the qualitative results and localization results.

(2)For a type of aero-engine accessory bearing, the bearing full-life accelerated fatigue test was carried out. During the test, the collected oil samples were analyzed by a variety of oil analysis methods to obtain a variety of actual oil analysis data under different wear states, and the influence law of the sampling technique on the oil analysis results was studied to obtain a case for the development of expert system software for aero-engine lubrication system.

(3)Finally, the fusion diagnosis method studied in this paper is applied to the expert system for intelligent analysis of aero-engine wear particles developed in cooperation with AVIC Commercial Aero Engines Co. The application results show that the research results of this paper have significantly improved the intelligence and automation of the expert system for intelligent diagnosis of engine wear faults.

Key words: aero engine, wear faults, fusion diagnosis, deep learning, one-dimensional convolutional residual networks, long and short-term memory networks

目 录

第一章	绪论	1
1.1	研究目的及意义	1
	1.1.1 课题来源	1
	1.1.2 研究背景及意义	1
1.2	2 油液监测技术及其诊断目标研究	2
	1.2.1 油液监测数据的主要分析方法	2
	1.2.2 油液分析方法的诊断目标研究	7
1.3	3 国内外研究现状	8
	1.3.1 基于油液分析的磨损故障诊断研究现状	8
	1.3.2 故障智能融合诊断研究现状	9
	1.3.3 基于深度学习的磨损故障诊断研究现状	11
1.4	↓本文主要研究内容及章节安排	12
第二章	一种改进的深度学习分类模型	14
2.1	引言	14
2.2	2 卷积神经网络结构	14
	2.2.1 卷积层	15
	2.2.2 池化层	15
	2.2.3 全连接层	16
2.3	3 一维卷积残差神经网络	17
	2.3.1 一维卷积神经网络	17
	2.3.2 残差网络	18
2.4	↓ 长短期记忆网络	19
2.5	5 改进的深度学习分类模型及其验证	20
	2.5.1 方法流程简介	20
	2.5.2 关键算法	21
	2.5.3 方法验证与分析	25
2.6	5 本章小结	27
第三章	航空发动机多目标融合诊断模型建立	28
3.1	〕引言	28
3.2	2 航空发动机多目标融合诊断模型整体架构	

3.3	基于模糊算法的 D-S 证据理论的磨损状态评价模型	29
	3.3.1 基于模糊算法的 D-S 证据理论模糊融合诊断方法	29
	3.3.2 数据模糊化	30
	3.3.3 建立诊断规则	31
	3.3.4 建立决策规则	32
3.4	基于深度学习的磨损部位诊断模型	32
	3.4.1 基于深度学习的航空发动机磨损部位诊断流程	32
	3.4.2 数据集及数据预处理	34
	3.4.3 模型训练与测试	34
3.5	基于知识规则的磨损原因分析	35
	3.5.1 航空发动机磨损原因分析	35
	3.5.2 诊断知识规则	38
3.6	本章小结	38
第四章	基于油液分析多源数据的多目标融合诊断验证	40
4.1	引言	40
4.2	油液分析多源数据的获取	40
	4.2.1 试验数据的获取	40
	4.2.2 试验数据预处理	45
4.3	验证结果及分析	48
	4.3.1 基于模糊算法的 D-S 证据理论模型的滚动轴承磨损状态评估分析	48
	4.3.2 基于一维卷积神经网络模型的滚动轴承故障部位识别分析	51
	4.3.3 基于知识规则的滚动轴承故障原因评估分析	53
4.4	本章小结	53
第五章	航空发动机磨损故障多目标融合诊断应用	55
5.1	航空发动机磨损故障专家系统开发背景	55
5.2	专家系统总体结构图	55
5.3	专家系统的总体功能介绍	55
	5.3.1 软件应用平台介绍	56
	5.3.2 数据库设计	56
	5.3.3 功能模块介绍	57
5.4	航空发动机磨损故障多目标融合诊断模块	59
	5.4.1 开发思路	59
	5.4.2 主要界面	59
	5.4.3 结果输出	61

5.5 本章小结	62
第六章 总结与展望	64
6.1 全文工作总结	64
6.2 未来工作展望	64
参考文献	65
致 谢	72
在学期间的研究成果及发表的学术论文	73
附录 某型航空发动机材料元素含量标准表(单位: ppm)	74

图表清单

图 1.1	油液监测技术和方法2
图 1.2	光谱仪
图 1.3	磨粒分析仪器4
图 1.4	颗粒计数器5
图 1.5	能谱分析仪
图 1.6	理化分析实验台7
图 1.7	油液监测技术及其应用7
图 2.1	经典 CNN 模型14
图 2.2	池化过程16
图 2.3	全连接过程16
图 2.4	一维卷积神经网络(1D-CNN)结构图17
图 2.5	一维卷积前向传播计算过程示意图18
图 2.6	残差结构块
图 2.7	LSTM 隐藏层 Cell 结构19
图 2.8	1DCNN-Resnet-LSTM 网络训练流程20
图 2.9	Sigmoid 函数(a图)及其导数(b图)21
图 2.10	Tanh 函数(a图)及其导数(b图)22
图 2.11	ReLU 函数(a 图)及其导数(b 图)22
图 2.12	本文方法在 UCI 数据集试验结果
图 2.13	不同方法在 UCI-Zoo 数据集上的试验结果27
图 3.1	航空发动机磨损故障多目标融合诊断流程图
图 3.2	基于 D-S 证据理论模糊融合流程图
图 3.3	自定义隶属函数
图 3.4	1DCNN-Resnet-LSTM 网络参数
图 3.5	模型测试结果
图 3.6	10 次训练测试结果
图 3.7	航空发动机磨损故障失效图
图 3.8	金属磨粒铁谱图
图 4.1	试验机40
图 4.2	试验轴承41
图 4.3	第1阶段疲劳试验轴承试件安装示意图42
图 4.4	第2阶段疲劳试验轴承试件安装示意图42

图 4.5	第3阶段疲劳试验轴承试件安装示意图	43
图 4.6	第4阶段疲劳试验轴承试件安装示意图	43
图 4.7	各轴承试件的试验时间	44
图 4.8	采样部位与磁堵强度	45
图 4.9	光谱分析数据	49
图 4.10	铁谱分析数据	49
图 4.11	颗粒计数分析数据	49
图 4.12	能谱图	
图 5.1	专家系统总体结构图	55
图 5.2	专家系统数据库结构	56
图 5.3	专家系统登录界面	57
图 5.4	专家系统主界面	57
图 5.5	样品信息注册主要界面	
图 5.6	阈值制定主要界面	
图 5.7	趋势预测主要界面	59
图 5.8	融合诊断界面一	60
图 5.9	融合诊断界面二	60
图 5.10	融合诊断界面三	61
图 5.11	磨损部位可视化显示界面	61
图 5.12	专家系统验证流程	62
图 5.13	融合诊断报告输出	62
表 1.1	各种油液分析数据对故障诊断的有效性分析	8
表 2.1	UCI 数据集基本信息	25
表 3.1	故障征兆元素界限值(部分)	
表 3.2	规则可信度	31
表 3.3	1DCNN-Resnet-LSTM 网络参数	
表 3.4	油液变质途径及其表征参数	37
表 3.5	油液性能参数变化与故障原因对照表	
表 3.6	元素故障界限值	
表 4.1	试验机主要技术指标	41
表 4.2	第1阶段疲劳试验轴承参数	42
表 4.3	第2阶段疲劳试验轴承参数	43
表 4.4	第3阶段疲劳试验轴承参数	43

表 4.5	第4阶段疲劳试验轴承参数	44
表 4.6	光谱数据(ppm)	45
表 4.7	铁谱数据(个/ml)	46
表 4.8	颗粒计数数据	47
表 4.9	能谱数据(ppm)	47
表 4.10	理化数据	48
表 4.11	规则可信度	50
表 4.12	光谱诊断结果	50
表 4.13	铁谱诊断结果	50
表 4.14	颗粒计数诊断结果	51
表 4.15	光谱和铁谱融合诊断结果	51
表 4.16	定性融合诊断	51
表 4.17	能谱图中各元素含量基本信息	52
表 4.18	定位诊断结果	52
表 4.19	发动机磨损故障状态判断	53
表 4.20	定因诊断结果	53

缩略词

缩略词	英文全称			
РНМ	Prognostic and Health Management			
AAS	Atomic Absorption Spectroscopy			
AES	Atomic Emission Spectrometry			
XRF	X-ray Fluorescence Spectrometer			
EDS	Energy Dispersive Spectrometer			
CMIS	Condition Monitoring and Interpretation System			
BP	Back Propagation			
NASA	National Aeronautics and Space Administration			
GPA	Grade Point Average			
AD	Anomaly Detection			
EHM	Engine Health Management			
D-S	Dempster-Shafer			
DNM	Dynamic Neural Model			
TDNN	Time Delay Neural Network			
MLP	Multi-Layer Perceptron			
SOM	Self-Organizing Feature Map			
CNN	Convolutional Neural Network			
DBN	Deep Belief Network			
CatAAE	Categorical Adversarial Autoencoder			
1D-CNN	1Dimension- Convolutional Neural Network			
Suzuki85	Border Following Algorithm			
ADSAE	Augmented Deep Sparse Autoencoder			
LSTM	Long Short Term Memory			
UCI	University of California, Irvine			
Resnet	Deep Residual Networks			
RNN	Recurrent Neural Networks			
FC	Full Connection			
Tanh	Hyperbolic Tangent			
ReLU	Rectified Linear Unit			

SoftMax	soft version of max
MSE	Mean Squared Error
MAE	Mean Absolute Error
GD	Gradient Descent
SGD	Stochastic Gradient Descent
Adam	Adaptive Moment Estimate

第一章 绪论

1.1 研究目的及意义

1.1.1 课题来源

本研究课题来源于中国航发商用航空发动机有限责任公司项目——民用航空发动机滑油摩 擦磨损颗粒测试分析技术研究、国家科技重大专项(J2019-IV-004-0071)子课题——复杂服役 环境下主轴承典型故障宏观动力学研究。

1.1.2 研究背景及意义

航空发动机是一种具有高复杂度和高精密度特点的热机,可以在飞机飞行过程中提供其所 需要的动力。作为飞机最重要的组成部分,有"工业之冠"的称号,对飞机的性能、可靠性和 经济性有着极为重要的影响^[1]。根据国际民航组织对近 20 年的航空事故的调查报告,机械故 障在所有事故中的比例一般为 25%至 30%。在众多机械因素引发的各类空难中,航空发动机 是关键因素,而磨损故障是其众多故障中发生频率较高的一种故障模式^[2],因此有必要对航空 发动机的磨损故障诊断进行研究。航空发动机的健康状态一般采用状态监测方法进行监测,包 括性能参数监测、振动监测和油液监测。与其他状态监测方法相比,油液监测在磨损故障诊断 方面表现得更好,可以从润滑油中的磨粒提取大量故障信息。此外,作为具有高可靠性要求的 飞机的关键部件,通常用故障预测与健康管理系统(Prognostic and Health Management: PHM) 来对发动机的可靠性进行增强^[3-5]。

PHM 技术通常是根据收集到的数据对航空发动机进行状态监测、故障诊断、故障预测和 维修决策,并从不同维度多方面的监控和判断航空发动机所处的状态^[6]。PHM 的最重要组成 部分之一一故障诊断,主要作用在于保证航空发动机能够正常运行,并给飞机提供多次飞行的 动力支持。目前以美国为首的西方国家是航发 PHM 领域中的领头羊,并且 PHM 概念也是由 欧美等国在 21 世纪的项目中 B787、A380 最早提出并应用于实际的工程项目中;而我国 PHM 系统的应用研究尚在起步阶段^[7]。随着近几十年来我国的工业现代化进程加快,中国的航空工 业技术和科学技术也处于飞速发展的阶段,基于我国航空发动机自主研发的需求,开发具有自 主知识产权的发动机故障诊断与健康管理系统具有重要意义。

随着人工智能技术的快速发展,智能故障诊断可以有效提高航空发动机故障诊断与健康管 理系统的诊断效果^[8]。然而,目前大多数的研究未能充分根据监测到的数据对发动机进行多方 面的诊断,无法对发动机磨损故障性质、发生的部位、以及产生严重磨损的原因进行全面的融

1

合诊断。

因此,针对当前航空发动机磨损故障诊断的不足,实现磨损故障定性分析、定位分析和定 因分析将有利于提高我国航空发动机自主研发,极大的提高工业水平和国防实力。结合深度学 习在深层特征提取与知识共享方面的独特优势,为解决航空发动机油液数据应用于多目标磨损 智能诊断的难题,本文根据多种油液分析数据的特点,将深度学习领域新技术运用到磨损故障 上,建立了航空发动机磨损故障融合诊断方法,实现了基于油液分析数据的航空发动机磨损状 态综合评估。

1.2 油液监测技术及其诊断目标研究

机械设备状态监测和故障诊断技术一般包括振动信号、声音信号、温度信号检测和润滑油 分析^[9]。其中润滑油分析提供了一种无损检测诊断方法,用于判断当前机械设备状态以及可能 即将要发生的故障,可以有效监测润滑油污染和机械磨损情况,同时可以避免发动机早期的机 械故障^[10]。油液分析技术主要通过监测油品的理化性能指标监测润滑油状态,通过观察磨粒 的大小、形状、颜色等观察机械的摩擦状态,包括光谱分析技术、铁谱分析技术、颗粒计数分 析技术、能谱分析技术和理化分析技术。

图 1.1 油液监测技术和方法

1.2.1 油液监测数据的主要分析方法

1.2.1.1 光谱分析技术

油液光谱分析技术是油液分析技术中的重要组成部分,通常根据光谱分析数据便可大致判断出发动机的故障状态。光谱分析技术的主要原理是根据监测油液中的金属元素原子在离子状态下发射的不同波长的谱线,来分析润滑油中的金属元素类型和数量,进而判断设备的磨损状态。目前的光谱分析技术包括原子吸收光谱技术(AAS)、原子发射光谱技术(AES)、X 荧光分析技术(XRF)、红外光谱技术、等离子体发射光谱技术等多种方法^[11],前两种分析方2

法是目前常用的光谱分析方法,主要是分析金属磨损颗粒的类型,包括 Fe、Cu、Cr、Pb、Al、Sn、Mo、Ni、Ti、Ag、Si、Mg、Mo、Ti、V 等元素,并有效监测各元素含量变化。

由于原子吸收光谱的操作麻烦,分析速度慢,因此,在航空发动机磨损故障分析中,通常 用如图 1.2 所示的电感耦合等离子体原子发射光谱仪器,以 ATM D5185 标准定时定量对采集 到的润滑油样品测量谱线波长及其对应强度,快速准确地监测出多元素成分及其浓度含量,并 基于分析得到的结果,对航空发动机进行故障诊断,快速判断出发动机故障状态。

现代油液诊断光谱分析技术可有效监测发动机的磨损状态以及润滑油系统中油液状态,该 方法是目前使用次数较多且最有效方法之一,在发动机故障诊断等方面有着重要的作用,可有 效保证飞机飞行安全。

(a)原子吸收光谱仪

(b)原子发射光谱仪

(c)x 荧光分析光谱仪

(d)电感耦合等离子体原子发射光谱仪

图 1.2 光谱仪

1.2.1.2 铁谱分析技术

铁谱技术是在高磁场环境下将磨损碎片从油样中分离出来,在显微镜下观察,研究和分析 磨损碎片的形态(形态特征、颜色特征、大小及其差异等)和成分,以确定设备的磨损状况。 自 1971 年美国开发出铁谱仪原型以来,在 20 多年的时间里,出现了四种类型的铁谱仪, 每一种都有自己的特点,包括直读铁谱仪、分析铁谱仪、在线铁谱仪和旋转铁谱仪。前两者更成熟,更常用。直读式铁谱仪具有检测速度快、数据重现性高、使用方便等优点,但不允许观察和分析磨粒形态。因此,它被用于状态监测,在出现磨损异常的情况下,分析铁谱仪被用于进一步观察和分析。分析性铁谱仪实际上是一个分析系统,由两个主要部分组成:铁谱仪和显微镜。图 1.3(b)显示了 OLYMPUS 公司 BX53M 型号铁谱分析仪。根据磨损颗粒系统,从铁谱仪中获得的金属磨料主要按其磨损形式分为:正常滑动磨粒、严重滑动磨粒、切削磨粒、疲劳剥块、球状磨粒、层状磨粒、红色氧化物以及黑色氧化物。

铁谱法是一种重要的、经常使用的技术,用于排除机械和设备的故障并监测其状况。通过 识别金属磨损颗粒,可以确定机器系统中的磨损程度、位置和类型,并为正确诊断和监测机器 系统的磨损状况提供重要依据。传统的磨损颗粒分析通常是由人进行的,其主要缺点是劳动量 大、精度低、自动化程度低以及对分析仪水平的依赖。出于这个原因,大学、研究机构和公司 的研究人员十多年来一直在寻求使用图像处理和识别系统来取代人工分析,并进一步提高诊断 准确性。

(a)直读式铁谱仪

(c)在线铁谱仪

(b)分析式铁谱仪

(d)旋转铁谱仪

图 1.3 磨粒分析仪器

1.2.1.3 颗粒计数分析技术

南京航空航天大学硕士学位论文

颗粒计数分析技术是一种污染分析技术。实践证明,监测油品污染,并在油品污染时及时 清理,是监测机械设备润滑和液压系统状况的最重要内容之一。油污染监测的目的是控制和保 持部件的摩擦表面对污染的抵抗力。目前,污染测试主要包括通过颗粒计数和称重的定量分析, 以及简单的半定量和定性分析。颗粒计数法测量油样中的颗粒大小,并根据预先选择的颗粒大 小范围对其进行计数,从而提供有关磨损颗粒大小分布的信息。颗粒大小的测量和计数曾经使 用光学显微镜进行,但现在已经发展到使用光电技术进行自动计数和分析。图 1.4(d)是编号为 LH-050 的 SLC1.0 颗粒计数器,实验室中按照我国标准 GJB380.4A 对油液中的颗粒进行检测。

(a)PAMAS 便携式油样颗粒计数仪(S2型)

(c)便携式污染检测仪

(b)LaserNet Fines-C 自动颗粒分析

(d)SLC1.0型自动颗粒计数器

图 1.4 颗粒计数器

1.2.1.4 能谱分析技术

能谱仪(Energy Dispersive Spectroscopy: EDS)简称能谱,通过检测特征 X 射线能量来 分析样品中小面积的元素组成和含量。它经常与扫描电子显微镜(SEM)和透射电子显微镜 (TEM)结合使用。当高能电子入射到一个样品上时,它们会被样品中的原子非弹性散射, 发出一个特征能量 ΔE 并产生 X 射线。由于每个元素的特征 X 射线的波长是不同的,特征波 长的大小取决于在能量跳跃过程中发射的特征能量。因此,能谱分析法以特征 X 射线的不同 光子能量来分析元素的组成。能谱分析法能对不同类型的电子显微镜和能谱图像进行更快、更 准确的定量分析、处理和评估,并对样品的形态和组成进行全面分析。

为了描述样品的各个部分,必须使用 SEM 扫描系统将入射电子带到样品的不同位置,以确定样品不同部分的形态和组成。图 1.5(a)中显示了一台扫描电子显微镜能谱仪,型号为 X-MAX20。当这种 SEM 光谱仪用于分析元素成分时,它不仅可以用于常规的科学工作,还可 以在观察样品形态的同时快速准确地进行定量和定性的元素分析。定量分析可以测量样品中某 种元素的含量或浓度,而定性分析是测量样品中某种元素的组成或其在样品中的分布。

(a)扫描电镜能谱分析仪

(b)透射电镜能谱分析仪

图 1.5 能谱分析仪

1.2.1.5 理化分析技术

油品的物理化学分析是用于监测发动机磨损的最常用方法之一。它主要利用油的物理和化 学特性来测试和分析油的酸度、氧化度、水分含量和硝化程度,以得出机器状况的信息。

在运行过程中出现油品退化或变质。如果机器在高温下运行,有过量的氧气或杂质,会导 致机器运行不正常,物理和化学值不正常。其中,异常的粘度会导致散热和油膜厚度降低;冷 却水或者水污染会导致设备腐蚀、生锈和添加剂保护能力降低;润滑油氧化会导致设备腐蚀、 淤泥和油漆划痕。因此,监测机油质量的变化以避免发动机损坏是很重要的。

在实际现场作业中,用如图 1.6 所示的理化分析试验台进行理化值的分析,包括酸值、闪 点值、杂质等。通常在 ASTM D664 的检测标准下用自动电位滴定仪测量酸值,在 ASTM D92 的检测标准下用开口闪点试验器测量闪点值,在 GJB 1264 的检测标准下用电子天平测量杂质 含量,在 GB/T 265 的检测标准下用运动粘度试验器测量粘度值,用微量水分分析仪在 GB/T 11133 的检测标准下测量水分。

定期定量的对油液进行理化分析,可有效实时监测油液品质,确保油液质量,保证机械设备各项指标处于良好状态,有利于减少设备维修费用。

图 1.6 理化分析实验台

1.2.2 油液分析方法的诊断目标研究

上述提到的五种油液分析技术在实际试验中都存在其相应的应用场景,并对应不同诊断目的。因此,为了充分利用多种油液分析技术的优势,本文详细分析了多源数据对故障定性、定 位和定因诊断的有效性。

油液的光谱分析方法能够根据元素含量的变化判断故障程度和磨损部位,但是无法准确判 断磨损故障的性质;铁谱分析方法能够定性地分析磨粒大小及其数量,并根据数量变化趋势判 断故障发生机理,缺点是难于实现故障定位;能谱分析方法可以根据能谱元素数据含量判断故 障发生的具体部位,缺点是难于判断磨损的严重程度和磨损故障性质及原因;颗粒计数分析能 够统计出油液中的磨粒尺寸及分布,但是难于诊断磨损部位及原因;理化分析仅仅能够对润滑 油的品质和磨损原因进行判别,不能对磨损的部位和程度进行振动,具体应用情况可见图1.7。

图 1.7 油液监测技术及其应用

航空发动机磨损故障多目标智能融合诊断是采用多源数据,实现磨损故障的定性、定位和 定因诊断^[12]。表 1.2 为各种油液分析数据对故障定性、定位、定因诊断的有效性。从表中可以 看出:对于定性诊断,光谱、颗粒计数和铁谱诊断的有效性最高,能谱数据和理化数据几乎不 能提供信息,因此,采用光谱数据、颗粒计数数据和铁谱数据来实现故障的定性融合;对于定 位诊断,除能谱数据外,其他数据均无法有效的对故障进行定位,因此,将能谱数据作为定位 部分的诊断数据;对于定因诊断,铁谱数据和理化分析数据携带了大多数故障原因信息,颗粒 计数数据次之,而光谱数据和能谱数据无定位诊断能力,因此在定位部分选择铁谱数据和理化 分析数据。

	光谱数据	颗粒计数数据	铁谱数据	能谱数据	理化数据
定性	***	***	***	—	*
定位	**	_	*	* * *	_
定因	—	—	***	—	***

表 1.1 各种油液分析数据对故障诊断的有效性分析

注: "***"表示有效性最高; "**"表示有效性中等; "*"表示有效性较差; "—"为无效。 该部分主要介绍了五种油液分析技术,并提出了油液分析方法的诊断目标研究-多源数据 多故障定性、定位和定因的有效性分析。该部分主要重点在于讨论并确定五种油液监测数据在 故障诊断上的意义,并依据各类数据在故障定性、定位和定因上的诊断能力大小,确定诊断目 标及其对应的油液数据。该部分工作是故障诊断的前提和基础,有助于提高航空发动机多源目 标诊断的可靠性和精确性。

1.3 国内外研究现状

航空发动机关键摩擦副(如齿轮和轴承等)的磨损是影响发动机可靠性和高效性的主要因素。目前,磨损故障诊断技术通常是根据故障特征及特征参数的值来进行诊断,主要根据机械 设备的运行状态并利用监测设备来确定发动机的损伤情况,进一步确定发动机损伤程度、部位 以及原因,同时可以通过融合多个故障指示来提高其诊断精度^[13]。

1.3.1 基于油液分析的磨损故障诊断研究现状

基于油液分析的磨损故障诊断,是诊断航空发动机磨损故障的重要手段。关键摩擦副的磨 损与退化的过程常常伴随着金属以及非金属屑末的产生,即使是在磨损早期,细微的颗粒也会 随着润滑油液进入滑油系统,因此,油液中的磨损颗粒反映了航空发动机关键部件的磨损状态。 基于油液分析的磨损故障诊断,是对油液中金属以及非金属颗粒的数量、大小、化学性质、颜 色等信息进行监测,以确定航空发动机磨损故障的故障类型、故障部位、故障程度及故障原因 ^[14]。目前,基于油液分析的磨损故障诊断研究主要表现为油液监测技术、专家系统开发与知识获取、融合诊断。

近年来,油液监测技术作为航空发动机故障监测的主要组成部分得到国内外的广泛关注与研究。油液监测主要通过监测油品的理化性能指标监测润滑油状态,以及通过观察磨粒的大小、形状、颜色等观察机械的摩擦状态。油液监测技术的发展依托于传感器的发展,美国 MEAS 公司研制的粘度传感器^[15]可以快速采样油液并实现粘度的变化分析。由加拿大 Gas TOPS 公司研制的 MetalSCAN 在线油液磨粒监测器^[16]在诸如 GET58 涡轴发动机的飞机发动机中得到了 广泛的应用。在国内,白敬彩^[17]等人根据石英晶体的固有特性,设计了一种基于石英音叉的 油液传感器,结合集成电路技术,实现了发动机油液粘度监测。牛泽^[18]等人设计的三线圈电 感式传感器可实现发动机等设备的油液金属磨粒监测。

航空发动机属于大型复杂设备,对其进行故障诊断需要大量的先验知识并借鉴航空领域的 专家经验,因此,需要建立航空发动机的磨损故障诊断专家系统,以便有效地监控航空发动机 旋转部件磨损的产生与发展。由加拿大和美国研发的状态监测系统 CMIS 以及润滑油分析专 家系统 Lube Analyst 和 Atlas3^[19]为航空发动机磨损故障提供了宝贵的经验; 国内多家研究机 构和高校对也相应开发了航空发动机磨损故障专家系统[20.21],可以进行部分故障的准确预警和 诊断。故障诊断专家系统的准确运行的关键在于领域知识的精确获取,目前,专家系统的知识 获取方法可分为以下两类:机械式规则获取以及规则自动获取。基于机械式的规则获取是通过 对领域专家以及知识工程师进行相关问题询问,在实际应用的专家系统中,机械式的规则提取 方法难以及时满足实际的运行需求。与机械式规则获取方法相比,规则自动获取方法充分利用 飞机运行中的实际数据,挖掘隐藏的有用信息以进行知识规则的自动获取,具有较强的泛化性 和适应性。随着人工智能算法的发展,基于神经网络、粗糙集以及支持向量机的知识规则获取 方法得到了广泛的研究与应用。陈果等[22]在航空发动机滑油光谱诊断专家系统中,结合粗糙 集理论中的离散、约简及规则提取算法实现了知识规则的自动提取。周俊[23]基于置信度,建 立自学习规则,实现了航空发动机振动监测与故障诊断系统的规则自动获取。孙德涵[24]基于 模糊神经网络建立专家系统自学习机制,在减速器润滑油监测故障预警专家系统中实现了知识 规则的自动提取。徐现强[25]在航空发动机涡轮部件故障诊断专家系统中基于知识约简算法进 行专家知识的属性约简和值约简以实现知识规则的自动提取。

1.3.2 故障智能融合诊断研究现状

通过油液监测所获得的油液监测数据反映了发动机磨损状态,如何有效地利用这些信息数 据对发动机磨损状态进行识别是航空发动机磨损故障诊断的首要任务。油液监测数据由于其种 类繁多且表征不同,表现出较强的离散性和随机性。因此,单一油样数据表征发动机磨损状态

9

不全面,通过单一油样分析方法的航空发动机磨损故障诊断精度有限。随着数据综合处理技术 的发展,在航空发动机故障诊断领域,基于信息融合的故障智能诊断方法逐渐成为近年来的研 究热点。

航空发动机故障智能融合诊断是结合历史与经验信息对不同类型的数据和信息进行合理优 化与处理的过程,即对不同种类的多种信息进行监测、关联、估计与组合处理的过程。根据起 始信息输入的类型,故障融合可划分为:数据层融合、特征层融合和决策层融合^[26]。数据层 融合输入信息的层级为多传感器测量的原始数据,直接对未经处理的原始观测数据进行融合, 得到一个综合指标^[27]。数据层融合采用原始数据,虽然保留了尽可能多的客体信息,算法处 理上更具灵活性,但未经处理的原始数据包含大量的噪声,抗干扰能力差,且数据量庞大,不 易于实时处理,是最低层次的融合诊断。相比于数据层融合,特征层融合充分利用发动机运行 中的原始数据,挖掘隐藏的关联信息提取故障特征,在此基础上进行融合分析,为决策层融合 提供基于局部信息或基于不同诊断方法的故障结论。决策层融合则是最高层级的故障智能融合 诊断策略^[28],将经过初步分析、判断后的局部故障诊断结果作为输入,采用粗糙集理论对其 进行处理以实现精准决策,具有良好的鲁棒性。

美国是将故障智能融合诊断技术用于航空发动机最早和最迅速的国家,NASA 采用两层 融合的方式对航空发动机进行故障诊断^[29],首先,通过发动机传感器数据,进行特征提取, 有效评价了发动机在运行过程中的健康状态。同时,参考飞行员与地勤人员在飞机运行过程中 记录的数据,以及飞机的历史维修与航行数据对航空发动机故障进行故障隔离,结合 GPA 健 康评价与 AD 异常监测两种方法,有效地实现了航空发动机故障诊断。Volponi^[30]提出了一种 适用性广泛的航空发动机数据融合基本框架,将智能融合诊断技术引入飞行器和航空发动机的 健康管理系统(EHM)中,有效提高了故障诊断能力及诊断精度。Dempsey等^[31]融合轴承内圈、 外圈、保持架和滚子故障特征频率的幅值和滑油金属屑末检测结果,利用模糊理论,构建了轴 承故障融合诊断方法来评估轴承故障状态。Wang Kun^[32]等提出了一种基于多模型架构下融合 神经网络的气路故障检测与隔离方法。Liu Junqiang^[33]则集成了 HELM 和迁移学习的优点,采 用注意力机制构建气路监测数据的全局依赖关系,融合目标域数据和源域数据实现了气路故障 诊断。

近年来,在航空发动机故障智能融合诊断研究方面,国内陆续取得了不错的成功。谢友柏 等^[34,35]对所获得的油液监测数据采用多种油样分析方法进行分析,并将分析结果进行智能融合, 实现了机器磨损故障诊断。陈恬等^[36]等采用决策层融合的故障智能融合诊断策略,将经过自 组织竞争网络和 BP 神经网络的 2 个诊断子系统初步分析、判断后的局部故障诊断结果作为输 入,使用改进的 D-S 证据理论对诊断结果进行处理,实例证明该方法具有更好的诊断精度。 鲁峰等^[37]从复杂度的角度,采用近似熵和互信息熵的方法提取能够表征气路系统状态的特征

10

向量,利用处理后的特征,建立信息融合模型,实现了发动机气路故障融合诊断。李业波等 ^[38]结合基于模型与数据驱动两种气路故障诊断方法,提出了基于 IDE-ELM 与 SVD-Kalman 以 及 IRR-LSSVR 的融合方法,极大提高了故障诊断的精度。曹桂松等^[39]采用多油样分析数据, 并将其模糊化,利用 D-S 证据理论实现决策层融合。

1.3.3 基于深度学习的磨损故障诊断研究现状

自深度学习理论被提出以来,在故障诊断与预测领域,基于深度学习智能故障诊断方法得 到了广泛的研究与应用。同时,基于深度学习的智能故障诊断方法也为航空发动机故障诊断提 供了一种新思路。基于深度学习的故障诊断方法有以下3种思路^[40]:

(1)采用传统的特征提取、选择方法,诸如,统计分析、模态分解等,在所提取特征的基础上,结合深度学习方法实现故障隔离与诊断^[41-43]。此类方法首先进行数据分析与特征提取,将先验知识引入算法框架中,再结合深度学习进行分类研究,有效地降低了模型的复杂度,增强了识别的准确性。

(2)通过深度学习从不平衡数据中提取故障特征,所提取的特征具有强大的特征表示能力,基于此类特征,结合多元统计分析技术实现无监督故障诊断^[44-46]。此类方法,采用无监督的方式,不依赖于先验信息,有利于进行控制工程与工业生产过程中的故障隔离与诊断。

(3)通过深度学习对参数数据进行进行封装式处理,以达到对故障辨识结果输出的目的 ^[47-49]。此类故障诊断方法是"端到端(End-to-End)"的形式,直接实现由输入到目标的输出, 在多隐层的网络中,协同优化特征提取以及模式分类的方法。

目前,根据目前公认较为经典的深度学习模型,故障诊断方法主要可分为以下四类:基于 栈式自编码网络的故障诊断方法、基于深度置信网络的故障诊断方法、基于卷积神经网络的故 障诊断方法和基于循环神经网络的故障诊断方法。国内外学者已经开展了一些深度学习算法在 故障智能诊断中的应用。S.Sina^[50]在故障检测任务中采用动态神经模型(DNM)和时滞神经网 络(TDNN)这两种架构,分别训练来捕获引擎可测变量之间的动态关系。通过使用多层感知 (MLP)网络作为模式分类器来完成航空发动机故障隔离。王修岩^[51]将 SOM 网络和协同学理 论相结合,根据实际数据进行验证,结果显示,所提出的航空发动机气路故障诊断模型具有较 高的诊断精度。Liu^[52]提出一种基于卷积神经网络(CNN)的热端部件故障检测方法,通过真 实数据验证了所发展方法的灵敏度。Tao^[53]提出了一种基于多振动信号和深度信念网络(DBN) 的故障诊断方法。利用 DBN 的学习能力,所提方法能够自适应地融合多特征数据,识别多种 轴承故障。Han Liu^[54]通过耦合两个单模态自编码网络的隐层表示,提出了基于分类逆自编码 器(CatAAE)的故障诊断策略。杨洁等^[55]采用一维卷积神经网络(1D-CNN),基于多源传 感器数据,实现轴承故障诊断。 在磨损故障诊断方面,Gecgel Ozhan^[56]等人开发一个采用深度学习算法的框架,利用模拟 振动信号对水动力滑动轴承磨损故障进行分类并采用不同磨损严重程度和工况下的数值模拟数 据集对诊断框架进行训练和测试,获得了较好的精度。李海平等^[57]结合主成分分析和欧氏距 离处理齿轮箱齿轮磨损数据,基于深度置信网络(DBN)进行磨损故障诊断。杨智宏^[58]等人 提出了基于 Mask R-CNN 卷积神经网络的磨损表征模型。该模型将迁移学习应用于 Mask R-CNN 网络,并对其进行训练,然后采用 Suzuki85 算法、迭代算法、等比例计算方法计算出磨 粒的真实尺寸,实现了磨粒图像的定量评价分析。Li^[59]提出了一种新的增强深度稀疏自编码器 (ADSAE)方法,该方法主要基于点蚀故障诊断理论,创造性地结合数据增强思想和深度稀 疏自编码算法对齿轮磨损进行故障诊断。朱渔^[60]等结合经验模态分解(EEMD)和双向长短时 记忆神经网络(Bi-LSTM),实现了齿轮泵行星轮齿面磨损及缺损等故障的精确识别。石新发 ^[61]等人将信息熵与神经网络结合,成功应用于船舶柴油机磨损故障识别。Wang^[62]等人提出了 一种多源信息融合的深度自注意力强化学习方法,结果表明,所提方法在识别诸如磨损及缺损 等复合故障诊断方面具有较好的实用性。

1.4 本文主要研究内容及章节安排

综合国内外文献分析可以看出,深度学习方法由于其优越的学习能力已经在其他领域得到 了广泛应用,是目前故障领域研究的热点。有鉴于此,本文以航空发动机磨损故障诊断为研究 目标,将深度学习方法引入到磨损故障融合诊断,充分利用润滑油中蕴含的磨损故障信息,结 合 D-S 证据理论和专家推理等方法,诊断出发动机润滑系统是否发生异常磨损,并进而找出 发生异常磨损的部位,分析异常磨损原因。全文的主要章节安排如下所示:

第一章,绪论。介绍本文课题的来源及其研究背景和研究意义,对油液监测的主要技术展 开讨论,总结出目前油液分析方法的诊断目标。分析了当前磨损故障融合诊断的国内外研究现 状,在此基础上,确定了本文的研究方向和内容。

第二章,基于深度学习的磨损故障部位识别。本章从卷积神经网络的相关理论循序渐进的 引入到本文所提出的 1DCNN-Resnet-LSTM 网络,针对能谱数据一维性特点,从传统的二维卷 积神经网络创新性的提出一维卷积,针对能谱数据长序列特点,有效的提出 LSTM 网络改善 总体网络性能,在此基础上,用 UCI 数据集对本文设计的深度学习分类模型进行验证,并与 其他分类模型进行对比,证明了本文提出的深度学习模型在一维长序列数据中分类的有效性。

第三章,航空发动机多目标融合诊断模型建立。以实现航空发动机磨损故障定性、定位和 定因为目标,融合光谱数据、铁谱数据、颗粒计数数据、能谱分析数据和理化分析数据信息, 综合考虑润滑油油品因素对发动机运行状态的影响,建立多目标融合诊断模型。针对定性问题, 提出基于模糊算法的 D-S 证据理论模型,针对定位问题,提出基于深度学习的磨损部位诊断 模型,针对定性问题,提出基于知识规则的磨损原因分析模型。

第四章,基于油液分析多源数据的多目标融合诊断验证。基于航空发动机机械磨损中最难 预报的磨损类故障是疲劳磨损,定制加工 ABLT-1A 型滚动轴承加速度疲劳试验器,搭建试验 平台模拟疲劳过程。用试验获得的油液数据对定性、定位和定因模型进行验证,其中,对深度 学习网络诊断结果进行了多方法的对比,验证了本文提出方法的有效性。

第五章,航空发动机磨损故障多目标融合诊断应用。开发了航空发动机磨损故障专家系统,同时将本文所提出的多目标融合诊断模型应用到所开发的专家系统中,并将该专家系统正式投入使用,为航空发动机智能监测提供了重要的技术支撑。

第六章为总结与展望,对本文的主要研究内容进行了简要的总结,并对后续研究工作进行 了展望。

第二章 一种改进的深度学习分类模型

2.1 引言

当前,诸如卷积神经网络(Convolutional Neural Networks, CNN)、残差网络(Deep Residual Networks, Resnet)等典型的深度学习模型均以二维的数据为输入,通过模型映射 后实现目标的分类与回归。而航空发动机滑油磨损颗粒能谱分析结果为一维序列数据,在 将该结果数据直接应用于上述模型的过程中需采用一维卷积核作为计算单元,以达到学习 序列数据中抽象特征的目的,进而实现航空发动机磨损部位识别。此外,相比于 CNN 模型,残差网络因引入残差块而提高了网络的训练与泛化能力^[63]。鉴于此,提出了一种改进 的深度学习分类模型——1DCNN-Resnet-LSTM,并应用于后续的磨损部位识别。

2.2 卷积神经网络结构

卷积神经网络是典型的部分连接的前馈神经网络,一般的前馈神经网络是由全连接层 构成的,而卷积神经网络在全连接层的基础上增加了卷积层和池化层,它是由这三部分交 叉组成,每一层都具有相同的权重,并且卷积层的最后一层是激活函数层,该层可以增加 输出层的非线性。卷积神经网络就是一个将输入经过一系列变换后进行输出的模型。输入 通常是指高级的语义信息,如图像,音频等,中间的变换通常包括卷积层的卷积操作,池 化层的汇合操作以及最后一层的激活层的计算,经过一系列操作将输入转化为数据进行输 出,通过反向传播训练后,得到一个训练好的模型,最后经过损失函数的计算,判断与真 实值的误差大小。传统的CNN框架如图2.1所示,包括卷积层、激活层、池化层和全连接层。

图2.1 经典CNN模型

公式(2-1)阐述了CNN在前向过程中逐层运行的过程,输入 x¹,它经过第一个方框的 处理,其输出作为第二层的输入,这个处理过程一直向前,直到CNN中所有的层都已处理 结束,最终输出 x^L。由于最后一层需要计算预测值与真实值的误差大小,所以需要经过反 向传播训练,计算每层参数,更新权重,再继续前向传播,如此往复,直至网络模型完全 收敛。

$$x^{1} \rightarrow \boxed{w^{1}} \rightarrow x^{2} \rightarrow \cdots \rightarrow x^{L-1} \rightarrow \boxed{w^{L-1}} \rightarrow x^{L} \rightarrow \boxed{w^{L}} \rightarrow z$$
 (2-1)

2.2.1 卷积层

卷积层通常位于卷积神经网络的第一层,主要的作用是作为输入数据的特征提取器, 具有多重内核卷积核的结构。卷积核中的每个元素都具有一个权重系数和一个偏差值,在 这一层的每个神经元都将被连接到前一层邻域中的其他神经元,同时连接区域的大小取决 于卷积核的尺寸。

由于本文的输入是一维原始油液分析数据,所以采用了一维卷积运算,如果输入数据 是 x,长度是 N,并且卷积核的权重向量是 Wc,那么卷积和激活操作的表达式是:

$$x_{j}^{I} = f(\sum_{i \in M_{j}} x_{i}^{I-1} * w_{ij}^{I} + b_{j}^{I})$$
(2-2)

假设输入特征图的尺寸为*W*×*H*×*D*,卷积核数量为*K*,卷积核大小为*F*,步长为*S*,填充值为*P*,则卷积操作特征图的输出尺寸可以根据公式(2-3)、(2-4)、(2-5)计算得出。

$$W' = \frac{W - F + 2P}{S} + 1 \tag{2-3}$$

$$H' = \frac{H - F + 2P}{S} + 1$$
(2-4)

$$D = K \tag{2-5}$$

2.2.2 池化层

池化层一般位于卷积层之后。池化层的主要作用是减少参数数量,缩短卷积运算的时间,同时可以有效避免过拟合。从卷积层产生的输出特征映射作为池化层的输入,其通过 仅保留具有指定池大小的窗口特征映射的值来降低特征映射的维度^[64]。

池化层首先通过自定义池化操作来决定池化对象的窗口显示到输入函数图上,然后使 用数字统计的方法来表示这些值,并最小化所选区域的分辨率。考虑到池化层的步幅参数 对降低分辨率和数字信息保存的影响,需要谨慎决定池化层的步幅参数。

目前使用较多的池化方法包括最大池化(Max Pooling)和平均池化(Mean Pooling)。 其表达式如下:

$$P_{ij}^{I} = \max_{(j-1)w+1 \le k \le jw} \left\{ x_{ik}^{I} \right\}$$
(2-6)

式中, P_{ij}^{I} 表示第 I 层的第 i 个通道上的 j 神经元的最大池化输出值, w 表示池化区域的宽度, x_{ik}^{I} 表示从第 I 层的第 i 个通道输入的第 k 个数据。

$$P_{ij}^{I} = \frac{1}{|k|} \sum_{(j-1)w+1 \le k \le jw} x_{ik}^{I}$$
(2-7)

式中, P_{ij}^{I} 表示第 I 层的第 i 个通道上的 j 神经元的平均池化输出值, w 表示池化区域的宽度, x_{ik}^{I} 表示从第 I 层的第 i 个通道输入的第 k 个数据。

图 2.2 展示了最大池化和平均池化的详细过程。

图 2.2 池化过程

由于最大池化在处理一维时间序列时效果优于平均池化,因此,本文采用了最大池化。

2.2.3 全连接层

全连接神经网络作为典型的前馈网络,具有很强的非线性处理能力,因此在 CNN 中 通常位于最后一层用于补充 CNN 的非线性,同时识别出上一层网络中不同的类别信息, 即对卷积层和池化层提取后的特征进行识别并分类,并将多个卷积核提取的特征数据组合 成一个维度。全连接层的具体计算公式见下式:

$$y^{k} = f(w^{k}x^{k-1} + b^{k})$$
(2-8)

式中: k 代表网络层数, y^k 表示全连接层的输出, x^{k-1} 表示k-1 层的输出, 第k 层的输入, w^k 为第k 层的权重, b^k 为第k 层的偏置, f 表示激活函数。

经典的全连接网络由输入层、隐藏层和输出层构成,具体结构如图 2.3 所示。

16

2.3 一维卷积残差神经网络

2.3.1 一维卷积神经网络

在过去的几十年中,二维和三维的 CNN 模型已经成功地应用于计算机视觉是图像处理应用中^[65],尽管在 2D 和 3D 上已经完成了对深层 CNN 模型的大量研究,但是1 维数据的应用最近才成为研究人员关注的焦点,对于 1D 信号和时间序列的数据挖掘,1DCNN 是目前最具前景的算法。1DCNN 的一个主要优势是它们能够将特征提取和特征分类或者回归操作组合成一个单一的学习体^[66],与传统分类技术执行分类任务不同,1DCNN 可以主动学习最佳特征,直接从训练数据中提取特征,有大量研究表明,依靠学习的特征而不是手动提取的特征可以显著提高准确性。一维卷积神经网络最近在几个具有挑战性的任务中实现了最先进的性能,包括心电图(ECG)信号分类^[67]、语音合成^[68]以及结构和机械损伤检测^[69,70]。

典型的 1DCNN 模型由以下部分组成:一个或多个卷积层,一个或多个池化层,一个 或多个全连接层,以及一个输出层。基于 CNN 的特殊结构,它可以从不同类型的数据中 提取特征^[71,72],从输入层到输出层,每一层都接收来自前一层的信号,然后将它们传递到 下一层。对于分类任务,这种经过训练的 1DCNN 的输出是提取的特征的向量,为了在 1DCNN 中添加分类的功能,通常将全连接层附加到 1DCNN 网络的最后一层,具体可见图 2.4。

图 2.4 一维卷积神经网络(1D-CNN)结构图

一维卷积前向传播计算过程如图所示,一维数据列向量作为输入,1*3为卷积核的尺 寸,设置卷积操作的步幅为1。卷积核沿着输入的顺序进行顺序移动,每移动一步,与对 应位置的值相乘再求和,具体计算过程如下:

图 2.5 一维卷积前向传播计算过程示意图

2.3.2 残差网络

为了解决随着深度的增加,神经网络出现性能退化、以及梯度消失的问题。2015年 He 等提出了 Resnet^[73,74]。Resnet 的经典之处在于其引入了残差块的概念。如图 2.6 所示为 残差块结构。

 $x_{l+1} = g(h(x_l) + f(x_l))$

图 2.6 残差结构块

图 2.6 中, x_l 为第 l个残差块的输入; $f(x_l)$ 为经过卷积、批归一化、激活函数的残差映 射输出: $h(x_l)$ 是恒等映射输出,该映射的目的是使得输入 x_l 和 $f(x_l)$ 具有相同尺寸,本文中 $h=x_l$ 表示为残差直连结构。g为 Relu 激活函数,如式(2-9)所示。

$$g(x) = \begin{cases} 0 & x < 0 \\ x & x \ge 0 \end{cases}$$
(2-9)

由图1中残差块结构可知,多个残差块连接的残差网络数学模型为:

$$x_{l+1} = x_l + f(x_l, w_l)$$
(2-10)

则第L层的输出为:

$$x_{L} = x_{l} + \sum_{i=l}^{L-1} f(x_{i}, w_{i})$$
(2-11)

根据文献[73],可得网络每层的梯度为:

$$\frac{\delta\varepsilon}{\delta x_{l}} = \frac{\delta\varepsilon}{\delta x_{L}} \frac{\delta x_{L}}{\delta x_{l}}$$

$$= \frac{\delta\varepsilon}{\delta x_{L}} \left(1 + \frac{\delta}{\delta x_{L}} \left(\sum_{i=l}^{L-1} f(x_{i}, w_{i})\right)\right)$$
(2-12)

式(2-12)表明,通过多个残差块的串联, Resnet 在误差反向传播的过程中,能够保证梯度 $\frac{\delta \varepsilon}{\delta x_l} > 0$,因此网络不会出现梯度消失的问题。

2.4 长短期记忆网络

LSTM 神经网络是一种随时间递归的神经网络^[75],其在 RNN 的基础上加入了 cell,用 来判断信息有用与否从而将其保留,且 LSTM 引入了"门限"(Gate)的概念,如图 2.7 所 示为 LSTM 的主要结构图。

图 2.7 LSTM 隐藏层 Cell 结构

其前向计算方法可以表示为:

$$f_{t} = \sigma(W_{f}[h_{t-1}, x_{t}] + b_{f})$$
(2-13)

$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$
 (2-14)

$$\tilde{C}_{t} = \tanh\left(W_{c}\left[h_{t-1}, x_{t}\right] + b_{c}\right)$$
(2-15)

$$C_t = f_t C_{t-1} + i_t \tilde{C}_t \tag{2-16}$$

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o) \tag{2-17}$$

$$h_t = o_t \tanh(C_t) \tag{2-18}$$

公式中: x_t 为一维卷积残差网络经过全连接层后的第 t 个输出; f_t 表示一个被遗忘的 阈值。指示输入阈值。 O_t 表示输出阈值。t是前一时刻的细胞状态或候选向量。 C_t 是当前 细胞状态(当前循环发生)。 W 表示权重因子矩阵(例如, W_h 表示隐藏层的权重因子矩 阵)。b表示偏置向量(例如,一个 B_h 表示隐藏层中的偏置向量)。 H_{t-1} 是前一时刻的单 位输出。 H_t 是当前单元格的输出。 σ 是 σ 函数。Tanh 是双曲正切激活函数。下面的字母t表示时刻。适合算法验证的信息仍然存在,否则信息被遗忘。二进制提取的原理可以增加 算法在重复运算中的训练精度和准确率。

2.5 改进的深度学习分类模型及其验证

2.5.1 方法流程简介

本章提出了能有效解决分类问题的深度学习模型,能够自动提取一维数据特征,实现 智能化故障诊断。以最小化损失函数为目标训练网络,训练流程如图 2.8 所示。具体训练 步骤总结如下:

步骤1: 选用用于机器学习研究的标准UCI数据集;

步骤2:将数据集划分为训练样本、测试样本;

步骤3:构建1DCNN-Resnet-LSTM网络;

步骤4:从参数反向更新中学习模型,利用梯度下降进行无监督的特征学习,并将提取的数据特征输入到分类层进行特征分类;

步骤5: 在测试样本上验证所提出的方法,并产生分类结果。
2.5.2 关键算法

2.5.2.1 激活函数

在 1DCNN 中, 卷积层的一层可以表示为公式(2-19)和(2-20)

$$Z_{j} = (\sum_{i=1}^{5} w_{i} \times x_{j+i-1}) + b_{j} \text{ for } j = 1, \cdots, k$$
(2-19)

$$h_j = f(z_j) \tag{2-20}$$

式中: x、h、w 和 b 分别是大小为 k 的输入数据的元素、当前层的输出、权重和偏置, 其中当前层的输出也是每个隐藏层的输入到输出之间的线性函数的结果。

由式(2-19)和(2-20)已知,卷积是线性运算,同时卷积的结果是各种特征的线性组合。 在卷积运算之后,激活层对于网络获得输入信号的非线性表达式是至关重要的,为了更好 地表达特征之间的非线性关系,一般通过激活函数增加特征之间的非线性。因此,为了给 网络增加非线性,往往在神经网络的隐藏层之间或者最后一层加上诸如 Sigmoid、ReLU、 Leaky ReLU 等激活函数,本文将详细介绍在深度学习领域中常用的激活函数。

1) Sigmoid 函数

式(2-21)给出了 Sigmoid 函数的数学表达式

Sigmoid 函数是深度学习中最常见的激活函数之一,它的函数图像如图 2.9 所示。该函数的输出为二进制,可将输入的数值压缩至 0-1 之间,当输入数值正向极限时,输出为 1,当输入数值负向极限时,输出为 0,该值可作为分类任务的概率值,基于该概率值,类标签为"0"或"1"。但是当输入的值为(5,+∞)或(-∞,5)时,会出现梯度饱和现象,致使网络在进行反向梯度计算时,梯度值会降至 0 附近,导致计算出来的权重值很小,无法计算网络的损失值,从而导致网络停止模型训练。

图 2.10 Tanh 函数(a 图)及其导数(b 图)

如图 2.10 展现了 Tanh 函数及其导数图,是 Sigmoid 的缩放平移形式,由图中可看出, Tanh 函数输出的是[-1,1]的值,该函数可以解决 Sigmoid 激活函数中非 0 均值问题,有效加 快权重更新速率,由图 2.10(b)和 2.9(b)易知,Tanh 函数梯度变化图与 Sigmoid 相似, 因此该函数仍然具有梯度饱和问题。

3) ReLU 函数

整流线性单元(ReLU)是具有零阈值的线性激活函数,也是目前 CNN 中使用最多的激活函数,该函数数学表达式是分段函数,具体如式(2-23)所示。当输入的值大于 0 时,线性输出原值,当输入的值小于等于 0 时,输出 0 值。根据图 2.11(b)可以看出,当输入值为正数时梯度恒为 1,能够有效解决梯度反向传播时的饱和问题,应用 ReLU^[76,77]可以加快

梯度下降的收敛,此外,ReLU函数可以加快训练速度并获得性能更优的网络模型。但是 对于梯度过大的输入,ReLU容易使得某些神经元失去激活功能,导致梯度为0,无法更新 参数。

4) SoftMax 函数

SoftMax 激活函数由式(2-24)给出:

soft max
$$(x)_i = p_i = \frac{e^{x_i}}{\sum_{i=1}^{M} e^{x_i}}$$
 (2-24)

式中,M表示输出层神经元的个数, X_i 表示前一层x的输出向量的第i个元素, P_i 表示 X_i 对应的概率值。

在二分类任务中,通常使用 Sigmoid 作为输出层的激活函数,而在多分类任务中,使 用较多的激活函数是 SoftMax。SoftMax 函数对输入值进行归一化处理,然后将各个单元的 输出转化为概率,使得所有概率值加起来等于 1。若 SoftMax 映射的值越大,代表其真实 类别的可能性越大,可选择概率值最大的分类作为预测目标。由于本文涉及到多分类任务, 因此,选择 SoftMax 函数作为本文的激活函数。

2.5.2.2 损失函数

训练 1DCNN 首先需要用随机值初始化参数,然后通过迭代训练过程优化参数,此过 程包括两个操作,前向和反向传播。前向传播是根据网络最后一层输出结果,使用某个损 失函数来计算 1DCNN 输出和该输入样本相关联的期望目标之间的误差。均方误差(Mean Squared Error: MSE)、平均绝对误差(Mean Absolute Error: MAE)和交叉损失函数 (CrossEntropyLoss)是该问题中常用的损失函数。

1) 均方误差

均方误差被用作卷积神经网络中的损失层,以计算实际和预测输出之间的损失或误差。 MSE 通常是用在回归任务中,式(2-25)给出了 MSE 损失函数计算公式^[78]:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(2-25)

式中: n 代表数据集的大小, Y;指实际输出值, Ŷ;指预测输出值。

2) 平均绝对误差

在卷积神经网络中, MAE 函数被用作输出层的度量,显示估计变量的百分比,公式 (2-26)给出了 MAE 公式^[79]

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$
 (2-26)

3) 交叉熵损失函数

交叉熵损失函数数学计算公式如式(2-27)所示[80]:

$$\mathbf{J} = -\sum_{i=1}^{I} y_i \log(p_i)$$
(2-27)

式中:*I*为分类类别总数。*p*_{*i*}为 Softmax 分类函数的输出,如式(2-24)所示,表示第*i* 个类别的概率;*v*_{*i*}为真实样本标签。

交叉熵损失函数是在处理分类问题时常用的损失函数,常与 Softmax 函数一起使用, 对网络输出结果进行处理,保持各分类的预测概率总和为1,最后利用交叉熵损失函数计 算损失。本文也采用该损失函数作为网络的目标函数。

2.5.2.3 反向传播算法

在训练深度神经网络中广泛使用的算法是反向传播,其使用梯度以及链式法则计算损 失函数相对于网络权重的梯度,用梯度来迭代更新 1DCNN 的阐述,直到满足某个停止标 准。具体可见等式(2-28)。由上文易知,损失函数是评估模型训练效果的标准,在每一次训 练迭代中,由输出层中的损失函数计算的误差反向传播到输入层,反向传播算法就是通过 利用优化算法对误差进行优化,使得网络获得最优的效果。

$$\frac{\partial CE}{\partial x_i} = \frac{\partial CE}{\partial h_i} \times \frac{\partial h_i}{\partial x_i}$$
(2-28)

在 CNN 模型的训练阶段,网络的各个参数首先被随机初始化或者使用不同的初始化 技术,在该阶段中可以使用几种梯度下降(Gradient Descent: GD)优化方法,例如随机梯 度下降(Stochastic Gradient Descent: SGD)^[81]和自适应矩估计 Adam 优化器^[82]。

1)随机梯度下降法

随机梯度下降法(SGD)是在网络每次更新迭代时,随机选取一个样本的数据来获取 "梯度",从而完成模型参数的更新。相较于传统的随机梯度下降更新方法,该方法不需 要每次更新时都需要遍历所有的数据,避免了因数据量过多而无法完成模型训练的情况。 随机梯度下降法(SGD)中参数更新公式如式(2-29)所示。

$$\theta_{t+1} = \theta_t - \eta \bullet \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)})$$
(2-29)

式中: η 为学习率, $\nabla_{\theta} J(\theta)$ 表示在单个样本 $(x^{(i)}, y^{(i)})$ 输入下,参数 θ 梯度大小。

2) 自适应矩估计 Adam 优化器

神经网络模型优化的目标是让损失函数值 J 趋近于 0,在进行网络训练时,优化算法 Adam 可以用来动态调整网络参数 w 和 b,其中,w 为基于 Adam 算法的权重更新值,b 表 示偏置,其具体公式如下^[83]:

$$m \coloneqq \gamma^* m + (1 - \gamma)^* \frac{\partial J}{\partial w}$$
(2-30)

$$s \coloneqq \beta^* s + (1 - \beta)^* \frac{\partial J^2}{\partial w}$$
(2-31)

$$\hat{m} \coloneqq \frac{m}{1 - \gamma^t} \tag{2-32}$$

$$\hat{s} \coloneqq \frac{s}{1 - \beta^t} \tag{2-33}$$

$$w \coloneqq w - \frac{b}{\sqrt{\hat{s} + \varepsilon}} * \hat{m} \tag{2-34}$$

其中, γ、β和 ε是超参数,正常值为 0.9、0.999 和 10⁻⁸,超参数用于维持数据稳定; *m* 称为动量,表示先对梯度进行动量下降; *s* 为关于梯度的指数加权移动平方和; *m̂* 为 *m* 偏 差修正的值, *ŝ* 为 *s* 偏差修正的值,使得过去梯度权值和为 1,防止值过小。

基于 Adam 算法可以自适应为不同参数得到不同大小的学习率,本文选择 Adam 算法 作为网络的优化算法。

2.5.3 方法验证与分析

为了验证本文方法的有效性和实用性,在本章中首先使用了由加州大学欧文分校提出的 UCI 数据集,该数据集是主要用于机器学习研究。在 UCI 机器学习数据库上收集了 5 个 常用的分类数据集^[84],包括二分类以及多分类问题。

表 2.1 给出了 UCI 数据集的简要描述,在本次分类任务中,数据集中的"ID"号、 "日期"和"名称"属性是不必要的,因此,本文将它们从原始数据集中进行删除,同时, 根据本文数据特点,选用的数据集皆为一维数值组成的数据向量。表 2.1 总结了样本、类 别的数量、特征的数量,构成数据集向量的属性数量。

数据集	特征数	样本数	分类数
Wine	13	178	3
Tic-tac-toe	9	958	2
WDBC	30	569	2
Zoo	17	101	7
Libras	90	360	15

表 2.1 UCI 数据集基本信息

Wine 数据集: 该数据集包含了 13 个特征,在这个多分类任务中总共 178 个样本。该数据集来自于来自于三个不同国家的三种葡萄酒,同时对这些葡萄酒中 13 种成分进行化学分析,确定了三总葡萄酒中的 13 种成分的数量。

Tic-tac-toe 数据集: 这个数据集对井字游戏结束时可能的棋盘配置的完整集合进行了 编码, 其中"x"被假定为先下。目标概念是"x"赢(即,当"x"有9种可能的方式来创 造"三连胜"时为真)。

WDBC 数据集:此数据集来自于威斯康星州乳腺癌数据,包含 569 个正常和异常细胞的样本,共有 30 个特征,这些特征是从乳腺肿块的细针吸出的数字图像中计算出来的,专门用来描述图像中存在的细胞核的特征,并对每张图像的平均值、标准误差和"最差"或最大值(三个最大值的平均值)进行计算。对于每幅图像,计算这些特征的平均值、标准误差和"最差"或最大值,得由此产生了 30 个特征。

Zoo 数据集: 该数据集共有 101 个记录, 分为7类, 是线性不可分的, 在 Zoo 中, 样本由 16 个属性描述, 其中 15 个为布尔属性值 {0,1} 和 1 个分类属性(腿的数量) {0,2,4,6,8}。

Libras 数据集: 该数据集包含 15 个类,每一类有 24 个实例,其中每一类都参考了 LIBRAS 中的一个手部运动类型。在视频预处理中,根据均匀分布,从每个视频中选择 45 帧进行时间归一化。在每一帧中,找到被分割的物体的中心点像素,这些像素构成了有 45 个点的离散版曲线 F,所有的曲线都在单元空间中被归一化,同时映射到一个有 90 个特征 的表示中,代表运动的坐标。

本文方法在各数据集上的分类效果如图 2.12 所示,横坐标表示的是五种数据集分别是、 Tic-tac-toe 数据集、WDBC 数据集、Wine 数据集、Zoo 数据集和 Libras 数据集。折线图中, 黑色线条是 UCI-Tic-tac-toe 分类任务,这是一个二分类任务,其输入维度是 1*9,数据集 包含 958 组数据,是本次验证数据集中样本数最多的一组数据;红色线条也是二分类任务, 来自于 UCI-WDBC 分类任务,其输入维度是 1*30,数据集包含 569 组数据;蓝色线条是 UCI-Wine 分类任务,该分类任务输入维度是 1*13,数据集包含 178 组数据;绿色线条是 UCI-Zoo 分类任务,其输入维度是 1*17,数据集包含 101 组数据;紫色线条是 UCI-Libras 分类任务,其输入维度是 1*90,数据集包含 360 组数据,该数据集是本次分类任务中特征 数和分类数最多的一组。从图中可以看出,本文提出的 1DCNN-Resnet-LSTM 在各个数据 集中表现都十分良好,在Tic-tac-toe、Wine、Zoo 和 Libras 数据集上最后的分类效果都达 到了 100%,而在 WDBC 数据集上的精度也达到了 91.3%。

图 2.12 本文方法在 UCI 数据集试验结果

为了进一步验证本文方法快速收敛和高精度的特点,本文在相同的试验条件下对

1DCNN-Resnet-LSTM、Resnet18、Resnet34、LSTM 和 CNN 的结果进行了对比验证。图 2.13 为各分类模型在 Zoo 数据集上的训练精度变化曲线图,图 2.13 同时给出了每种算法达 到 100%精度的计算时间和相应的迭代次数。1DCNN-Resnet-LSTM 在第 9 次迭代时收敛到 100%的精度,计算时间为 1.124s; CNN 在第 10 次收敛到 100%的精度,计算时间为 1.32s; Resnet18 在第 16 次迭代时收敛到 100%的精度,计算时间为 6.819s; LSTM 在第 18 次迭代 时收敛到 100%的精度,计算时间为 6.82s; Resnet34 在第 21 次迭代时收敛到 100%的精度, 计算时间为 15.448s; 相比另外四种算法,本文算法收敛速度更快。

图 2.13 不同方法在 UCI-Zoo 数据集上的试验结果

本章重点介绍了算法在公开数据集上的验证过程,在下一章中,将着重介绍该方法在 故障部位识别中的应用。

2.6 本章小结

本章提出了一种改进的深度学习分类模型。该模型由一维卷积神经网络、残差网络和 长短期记忆网络组成,将一维数据和目标分类有效结合,并给出了该模型在 UCI 数据集上 的验证,同时选用其他分类模型与本章提出的方法进行对比,实验结果表明,在不同的分 类模型下,本文方法在公开数据集上有较好的适用性,具有高精度和快速收敛的特点,对 解决实际一维数据分类问题能够给出较好的结果,极大程度上减少了对专家经验和知识的 依赖。

第三章 航空发动机多目标融合诊断模型建立

3.1 引言

本章提出了利用多种油液分析数据,从定性、定位和定因三个目标分别展开对发动机 磨损故障的研究方法。详细介绍了多目标融合诊断模型的整体架构,以及故障定性、定位 和定因的方法及其主要流程。

3.2 航空发动机多目标融合诊断模型整体架构

如图 3.1 展示了航空发动机磨损故障多目标融合诊断的具体流程,其具体实施步骤包括:

图 3.1 航空发动机磨损故障多目标融合诊断流程图

(1)首先利用各项检测技术对滑油中磨损颗粒的特征以及滑油本身的理化性能进行数据采集与处理,取得磨损颗粒的各项特征信号及油品的属性特征,以所建立的属性特征为

输入主要实现故障的定性、定位和定因分析。具体的油液数据包括光谱分析数据、铁谱分 析数据、颗粒计数数据、能谱分析数据和理化分析数据,并根据数据特点,划分为定性数 据、定位数据和定因数据,分别用来对故障进行定性诊断、定位诊断和定因诊断。(数据 具体特点可见第一章油液分析方法的诊断目标研究,该部分详细介绍了各个分析数据对故 障诊断的有效性并确定了不同数据对故障诊断的意义。)

(2) 基于模糊算法实现基于 D-S 证据理论的定性分析,用于判断发动机磨损程度。

(3) 在定位诊断部分,构建了 1DCNN-Resnet-LSTM 网络模型,以能谱分析数据为驱动,实现对磨损部位的定位诊断;

(4) 在定因诊断部分,根据专家经验,建立了基于 IF-THEN 知识规则的模型,找出 油液分析数据与故障原因的对应关系,有针对性的建立知识规则,并将该规则存储到知识 规则库中,进行故障原因诊断。

3.3 基于模糊算法的 D-S 证据理论的磨损状态评价模型

3.3.1 基于模糊算法的 D-S 证据理论模糊融合诊断方法

发动机磨损故障定性分析是实现定位分析和定因分析的前提与基础。为了定位分析和 定因分析,必须先对故障状态进行判断,进而实现航空发动机磨损故障多目标融合诊断。

图 3.2 基于 D-S 证据理论模糊融合流程图

图 3.2 给出了基于模糊算法的 D-S 证据理论流程图,该方法首先对有定性能力的数据

进行模糊化处理,得到隶属于异常模糊集的隶属度;然后用模糊隶属度值和建立好的诊断 规则获得各模糊集的综合可信度;最后对决策规则得到的数值进行分析,判断发动机故障 状态。

3.3.2 数据模糊化

由于各种油液分析方法得到的数据具有不同的量纲和量纲单位,本文引入了模糊集合的概念,通过构建模糊逻辑隶属度函数模型,获得各个油液检测参数的可信度^[85,86]。

根据油液数据特点,建立如下故障征兆集:

$$S_{1} = \left\{ s_{1}^{1}, s_{1}^{2} \cdots s_{1}^{n_{1}} \right\}$$

$$S_{2} = \left\{ s_{2}^{1}, s_{2}^{2} \cdots s_{2}^{n_{2}} \right\}$$

$$S_{3} = \left\{ s_{3}^{1}, s_{3}^{2} \cdots s_{3}^{n_{3}} \right\}$$
(3-1)

其中, S_1 、 S_2 、 S_3 分别代表三种油液分析技术的故障征兆集, $s_i^j(i = \{1, 2, 3\}, j = \{1 \cdots n_3\})$ 代表各油液分析技术对应的具体故障征兆元素,表 3.1 直观的列出了部分故障征兆元素及其对应的界限值。

表 3.1 故障征兆元素界限值(部分)

方法	光	谱分析	(S_1)	钧	、谱分析 (S ₂)		颗粒	立计数分析	$\tilde{r}(S_3)$
故障征兆元素	Fe	Ag	Cu	疲劳磨粒	球状磨粒	层状磨粒	>15µm	>25µm	>50µm
警告值	$a_1^{m_{11}}$	$a_1^{m_{12}}$	$a_1^{m_{13}}$	$a_1^{m_{21}}$	$a_1^{m_{22}}$	$a_1^{m_{23}}$	$a_1^{m_{32}}$	$a_1^{m_{33}}$	$a_1^{m_{34}}$
异常值	$a_2^{m_{11}}$	$a_2^{m_{12}}$	$a_2^{m_{13}}$	$a_2^{m_{21}}$	$a_2^{m_{22}}$	$a_2^{m_{23}}$	$a_2^{m_{32}}$	$a_2^{m_{33}}$	$a_2^{m_{34}}$

表1中故障征兆元素的界限值可以根据专家经验得到,基于此,划定"正常"、"警告"、"异常"三种发动机故障状态。根据专家经验和实际的统计分析结果得到的界限值将油液分析数据划分为"正常、警告、异常"三种状态。设每种油液监测数据异常的模糊集合为*G_i*(*i*=1,2,...,*n₁+n₂+n₃+n₄*)。

首先利用自定义隶属度函数对油液检测数据进行模糊化处理,隶属度函数表达式如式 (3-2)所示。

$$U(x_{i},a_{1},a_{2}) = \begin{cases} 0.5 \times \frac{x_{i}}{a_{1}} & 0 \le x_{i} \le a_{1} \\ 0.5 \times \frac{x_{i} - a_{1}}{a_{2} - a_{1}} + 0.5 & a_{1} < x_{i} \le a_{2} \\ 1 & x_{i} > a_{2} \end{cases}$$
(3-2)

式中, X_i 为第*i*个证据的输入值, a_1 、 a_2 为第*i*个证据的警告界限值和异常界限值, 输出值 U 为第*i*个证据的可信度。

根据专家经验和实际的统计分析结果得到的界限值将油液分析数据划分为"正常、警告、 异常"三种状态。

图 3.3 自定义隶属函数

3.3.3 建立诊断规则

基于诊断方式采用规则推理的方法,建立"故障"与"油液分析数据"之间的规则: RULE:

IF "
$$E_i$$
异常" (CFE_i),

THEN "故障 F 发生" (*CFR*_i)。

其中, *E_i*表示第 i 个证据, *CFE_i*为第 i 个证据的可信度。为计算各油液分析数据的证据可信度, 采用式(1)对相关数据进行模糊化,并将模糊化后的值设定为该数据的证据可信度,即 *CFE_i*=U(*x_i*,*a₁*,*a₂*); *CFR_i*为每条规则的可信度,一般情况下, *CFR_i*的取值区间在 [0-1]之间,当*CFR_i*取值为0时,代表"故障F"一定不发生,当*CFR_i*取值为1时,代表 "故障F"一定发生。在基于大量的专家知识和试验数据的基础上,根据每个证据建立相应的规则可信度。且

$$\sum_{i=1}^{n} CFR_i = 1 (i = 1, 2, ..., n)$$
(3-3)

本文中油样数据(E_i)的规则可信度如表 3.2 所示。

表 3.2 规则可信度 分析方法 光谱分析 证据 Cr Pb Ti Fe Cu Sn Al Ni Mn Ag Si 规则可信度 0.05 0.1 0.05 0.05 0.02 0.02 0.02 0.05 0.5 0.05 0.05 分析方法 铁谱分析 颗粒计数分析 光谱分析 疲劳 球状 红色 黑色 层状 >5µm >15µm >25µm >50µm Mg Mo 证据 氧化 氧化 磨粒 磨粒 磨粒 物 物 规则可信度 0.02 0.02 0.4 0.10.1 0.2 0.2 0.1 0.2 0.3 0.4

设 CF_i 为每条规则的综合可信度,则

$$CF_i = CFE_i \times CFR_i (i = 1, 2, \dots, n)$$
(3-4)

当*CFR*_i=1时,有

$$CF_i = CFE_i$$
 (3-5)

3.3.4 建立决策规则

Dempster-Shafter(D-S)证据理论是目前决策层融合中最常用的一种方法。它建立了广义 Bayes 理论,根据人的推理模式,采用概率区间或不确定区间来决定多证据下假设的似然 函数^[87]。

对于两重假设问题。设每个陈述对假设 A 的支持程度分别为 $m_1(A), m_2(A), \cdots m_n(A)$, 以及 $m_1(\theta), m_2(\theta), \cdots m_n(\theta)$, 且有

$$m_{1}(\theta) = 1 - m_{1}(A)$$

$$m_{2}(\theta) = 1 - m_{2}(A)$$

$$\dots$$

$$m_{n}(\theta) = 1 - m_{n}(A)$$
(3-6)

由数学归纳法可以证明得到:

$$m^{n}(A) = 1 - \prod_{i=1}^{n} m_{i}(\theta)$$
 (3-7)

根据以上理论,本文用第i个证据所建立的综合可信度 CF_i 计算该补集发生的概率k: $k=1-CF_i$ (3-8)

多条规则的融合输出结果如式(3-9)所示:

$$y = 1 - \prod_{i=1}^{n} (1 - CF_i)$$
(3-9)

具体的诊断规则如下所示:

IF: $0 < y \le 0.5$

THEN"该故障不发生,系统正常!"

IF: $0.5 < y \le 0.8$

THEN"该故障可能发生,系统磨损可能不正常!"

IF:
$$0.8 < y \le 1$$

THEN"该故障已经发生,系统磨损异常!"

3.4 基于深度学习的磨损部位诊断模型

3.4.1 基于深度学习的航空发动机磨损部位诊断流程

发动机磨损故障定位分析的目的是进行故障部位识别,获得故障发生的具体位置,作 为接下来进一步分析故障发生原因的参考信息。

对油液进行能谱分析可以获得金属元素及其对应的元素含量,由于测得的能谱元素能 够与发动机摩擦副材质进行对应,因此,本文选用该数据作为表达航空发动机磨损部位信 息的关键数据。

针对传统的数据特征提取方法难以提取滑油能谱数据有效特征的缺陷,本文提出了一种基于残差网络(Deep Residual Networks, Resnet)长短期记忆(long short-term memory, LSTM)神经网络的网络模型。不仅能实现端到端的发动机故障部位诊断,提高诊断效率;增加的残差网络也可以克服神经网络深层结构导致梯度消失的问题,提高整体分类精度^[88];此外,考虑能谱数据在时间维度上的变化,利用 LSTM 网络能获取数据在时间维度上的一维特征^[89]。鉴于此,提出了用于航空发动机磨损部位诊断识别的 1DCNN-Resnet-LSTM 网络。

如图 3.4 所示。其中,输入为航空发动机滑油磨损颗粒经过能谱分析后所得的 33 种元 素含量百分比,经过 1DCNN-Resnet-LSTM 网络计算后,输出航空发动机磨损部位的 29 种 材料牌号。1DCNN-Resnet-LSTM 网络模型主要由 4 层残差网络、全连接层和 LSTM 网络 (LSTM 通过自身的记忆功能能够较好的处理长序列数据)组合而成。

图 3.4 1DCNN-Resnet-LSTM 网络参数

1DCNN-Resnet-LSTM 网络模型参数设置如表 3.3 所示。其中卷积核大小为 1×3, 每层 有 2 个残差块。

结构	卷积核参数	输出大小
第一层	(1×3×64) ×2	1×31
第二层	(1×3×128) ×2	1×15×128
第三层	(1×3×256) ×2	1×7×256
第四层	(1×3×512) ×2	1×3×512
FC	512×3×1	1536×1
LSTM	1536×3×200	200×1
FC	全连接层	29×1

表 3.3 1DCNN-Resnet-LSTM 网络参数

3.4.2 数据集及数据预处理

在实际故障识别应用中,通常存在材料牌号数据量不足的问题,导致故障诊断模型泛 化性能不高。本文利用仿真的方法增加训练样本数量以提高模型泛化性能。

根据某型航空发动机材料数据库现有的 29 种材料牌号(具体材料牌号及其对应元素含量可见附录 某型航空发动机材料元素含量标准表),将样本标签划分成 29 类,并利用式(3-10),对现有的样本扩充至 29000 组,将样本集按照 7:3 进行拆分,70%用于训练,30%用于测试,同时添加相应标签,并打乱训练集。

$$k_m = (u_b - u_l) \times r_1 + u_l \tag{3-10}$$

式中: *k* 为材料的第*m* 个元素百分比含量; *u_b、u_l*分别为元素含量的上限和下限; *r*₁∈ [0,1]之间的随机数。考虑到每个材料牌号都对应着 33 种元素百分比含量,因此在生成单个 样本的过程中,先产生 33 个随机数 *r*₁。然后,采用式(3-10)生成每个元素对应的百分比 含量。

3.4.3 模型训练与测试

完成训练样本的准备后,将 Adam 优化算法^[90]用于模型训练,Adam 优化器可以有效 缓解梯度震荡问题。损失函数采用交叉熵损失函数(Cross-entropy loss function),以最小 化损失函数为目标训练网络。

为了验证所构建的模型故障诊断效果,本文分别采用了一维 Resnet18、Resnet34、 CNN 以及 LSTM 四种模型对航空发动机故障部位进行识别,试验中采用 GPU 为 NVIDIA GTX1660 6G; i5-9600K 处理器; 8G 内存; 运行系统为 Windows10; 编程语言为 Python3.7; 深度学习框架为 Tensorflow1.15。设置批处理样本量为 64; 迭代训练次数为 100。

如图3.5所示为1DCNN-Resnet-LSTM网络在仿真数据集上每轮训练中测试精度值变化曲线。以在测试集上的最大测试精度为前提,保存模型的训练结果,为后续的模型验证做准备。图3.5中同时给出了一维Resnet18、Resnet34、CNN以及LSTM每种算法的测试精度值

变化曲线。图中结果可看出,本文所提1DCNN-Resnet-LSTM网络和Resnet34网络的最终测试精度为100%;其次是Resnet18和LSTM,精度分别为99.32%、98.85%;最后是CNN网络模型,精度为97.2%。结果显示相比Resnet18、LSTM、CNN等模型,本文所提的算法具有更高的测试精度,而Resnet34虽然和本文模型具有相同的测试精度,但是相比与Resnet34,本文模型具有更少的模型参数。

为验证算法的有效性,对每种算法分别进行了10次训练,如图3.6所示为各个算法的10次测试结果。图中结果显示,本文所提的1DCNN-Resnet-LSTM模型相较其他几种算法的测试精度更高,且十次的计算结果偏差更小。

图 3.6 10 次训练测试结果

3.5 基于知识规则的磨损原因分析

3.5.1 航空发动机磨损原因分析

经过上述故障定性分析和定位分析之后,可以有效判断发动机相应的磨损程度及对应 磨损部位。为了找出发动机故障原因,应先了解发动机润滑系统应先获取油液性能参数与 故障原因的对应关系。

在对航空发动机磨损故障机理相关分析中,了解其发生的具体原因是较为困难的一件 事。因此,为了找出发动机磨损原因,本文从发动机磨损故障部位、磨损故障形式和磨损 故障信息源这三方面来详细论述航空发动机磨损故障原因。

在航空发动机磨损故障研究中,通常是对发动机的齿轮、轴承和密封件[91]等关键运动

部件进行磨损故障诊断,主要包括主轴承磨损故障、小轴承磨损故障、滑油泵磨损故障、 齿端面磨损故障、外滚道损伤、内套圈滚道上的滚动接触疲劳花样、钢球剥落和保持架外 圆周面磨损等磨损故障失效形式。图 3.7 为航空发动机部分故障失效图。其中轴承疲劳磨 损多发生在高强度的工作压力而导致的交变应力作用下,在接触面形成疲劳裂纹;若润滑 油中含有水份或其变质会导致腐蚀失效;当润滑不良时也会产生磨损失效。

主轴承 (小轴承) 故障

保持架外圆周面磨损

滑油泵磨损

保持架兜孔磨损

图 3.7 航空发动机磨损故障失效图

当前航空发动机磨损失效原因一般用铁谱磨粒数据和理化数据进行分析^[14],铁谱数据 可以根据磨粒大小及其数量,对照故障界限值,快速准确地判断出故障发生的原因,理化 数据主要根据测量仪器测量出油液的化学性质,利用其表征参数大小分析故障发生原因。 表 3.4 给出了油液具体的变质途径,包括油液降解途径和油液污染途径,基于此,给出了 对应途径的表征参数。

(a)正常滑动磨粒

(d)层状磨粒

(b)疲劳剥块

(c)红色氧化物 图 3.8 金属磨粒铁谱图

(c)球状磨粒

(f)黑色氧化物

表 3.4	油液变质途径及其表征参数	

	油液变质途径	表征参数				
油液降解	氧化/硝化/磺化	粘度、总酸值、总碱值、氧化深度、硝化深度、硫酸盐、				
途径	添加剂损耗	抗氧剂水平、抗磨剂水平				
		闪点、粘度、燃料水平				
油液污染	燃料稀释、水分、冷却剂、积	水含量、水水平				
途径	炭/固体杂质	冷却剂水平				
		不溶物含量、积炭水平				

在明确航空发动机磨损故障部位、形式和信息源之后,表 3.5 给出了磨粒数据变化、 理化数据变化和故障发生原因之间具体的关系。在众多铁谱数据中,本文仅讨论疲劳磨粒、 球状磨粒、层状磨粒、红色氧化物和黑色氧化物数据变化对故障原因的影响,在众多理化 分析数据中,本文仅讨论水分、杂质、粘度和酸值的数值变化对故障原因的影响。当滚动 轴承疲劳剥落失效时,疲劳磨粒、球状磨粒和层状磨粒数量会急剧增多;当润滑油中混有 水分的时候,会导致红色氧化物数量增多,水份值从零到有,也会导致粘度含量降低;当 发动机长时间处在高压环境下时,出现黑色氧化物数量急剧增多,粘度含量也会高于其界 限值。判断各类参数数量是否增多的标准是根据各参数界限值制定,具体界限值的制定也 是根据大量专家经验的领域知识进行判断,具体界限值如表 3.6 所示。

油液分	析类型	油液参数变化				故障	故障发生原因			
疲劳、球状和层状磨粒数量高于警告限				市限 滚动	滚动轴承疲劳剥落失效					
		红色氧	化物数量	自己主要告问	限	润滑	計油中混有7	k分		
铁谱	行分析					润清]油供应不	足,长时	时间高温高	负载工
		黑色氧	化物数量	吉 于警告[限	作				
		水分含	量高于警	皆思		润滑	计油中混有7	水分		
		杂质含	量高于警	皆思		润滑	计油中混有研	更质颗粒	杂质	
			润清	润滑油供应不足,长时间高温高负载工						
理化	公析	粘度含	量高于警	§告限		作	作			
		粘度含	量低于正	E常限		润滑	润滑油中混有水分			
		酸值含	量高于警	各限		润滑	h油供应不是	E		
				表 3.6	元素故	障界限值				
		铁谱	分析(≻/ml)			Ŧ	里化分析		
元素	疲劳	球状	层状	红色	黑色	黏度	酸度	闪点	水分	杂质
	磨粒	磨粒	磨粒	氧化物	氧化物	mm ² ·s ⁻¹	mg·kg⁻¹	t/℃	mg·kg ⁻¹	%
正常值	2	3	1	1	1	25	0.05	258	0	0
警告值	4	5	2	3	2	22.5/27.5	0.15	273	0.001	0.1

表 3.5 油液性能参数变化与故障原因对照表

3.5.2 诊断知识规则

知识规则获取的关键来源来自于领域专家的经验,在工程实际应用中,通常采用基于 IF-THEN 的知识规则表达式,该表达式具体如式(3-11)所示:

IF (条件 1,条件 2,…条件 N)

THEN (结论 1,结论 2,…结论 M),置信度 (CF) (3-11)

该式中,条件N的最大值通常设置为20, M设置为1,置信度CF的区间为[0-1]。

3.5.2.1 铁谱诊断知识规则

在对铁谱数据进行分析时,需要大量的依靠人工经验,耗时耗力,因此,本文根据该 领域方面的专家经验^[38,91],将对铁谱已有的诊断经验转化为知识规则存入数据库中。规则 总结如下:

Rule1: if 疲劳磨粒数<4and 球状磨粒数<5and 层状磨粒数<2and 红色氧化物数<3and 黑 色氧化物数<2, then 系统正常(置信度=1);

Rule2:if 疲劳磨粒数≥4, then 滚动轴承疲劳剥落失效(置信度=0.8);

Rule3:if 球状磨粒数≥5, then 滚动轴承疲劳剥落失效(置信度=0.5);

Rule4:if 层状磨粒数≥2, then 滚动轴承疲劳剥落失效(置信度=0.6);

Rule5:if 红色氧化物数≥3, then 润滑油中混有水分(置信度=0.8);

Rule6:if 黑色氧化物数≥2, then 润滑油供应不足或者长时间高温高负载工作(置信度 =0.8)。

3.5.2.2 理化分析诊断知识规则

油液的理化性能往往最直接的反应油液变质途径,主要包括油液降解途径和油液污染 途径,其中降解途径的表征参数有粘度、酸值、油液污染途径的表征参数有闪点、粘度、 水含量、杂质含量。因此,可以通过分析各理化数值找出故障发生的具体途径和具体原因 [^{38]}。

Rule1:if 粘度值<22.5, then 润滑油中混有水分(置信度=0.8);

Rule2:if 粘度值≥27.5, then 润滑油供应不足或者长时间高温高负载工作(置信度 =0.7);

Rule3:if 酸值≥0.15, then 润滑油供应不足或者长时间高温高负载工作(置信度=0.8); Rule4:if 闪点≥273, then 润滑油供应不足或者长时间高温高负载工作(置信度=0.8); Rule5:if 水分≥0.001, then 润滑油中混有水分(置信度=0.8);

Rule6:if 杂质≥0.1, then 润滑油供应不足或者长时间高温高负载工作(置信度=0.7)

3.6 本章小结

本章针对目前航空发动机磨损故障融合诊断中的现有问题,将定性诊断、定位诊断和 38 定因诊断融合到一起,同时充分利用油液分析数据,针对不同数据不同特点,将数据价值 最大化。在定性诊断部分,提出利用 D-S 证据理论对光谱数据、铁谱数据和颗粒计数数据 进行融合诊断;在定位诊断部分,将1DCNN-Resnet-LSTM 网络引入到数据特征提取中, 在现有的能谱数据基础上,扩充当前数据集,以保证达到网络最优效果;在定性诊断部分, 将行业内权威的专家经验以IF-TEEN 知识规则的方式存储到数据库中,在之后的故障诊断 中,可以尽可能的减少对人工判断的依赖。

第四章 基于油液分析多源数据的多目标融合诊断验证

4.1 引言

为了验证本文提出的多目标融合诊断方法,并基于中国航发商用航空发动机有限责任 公司对滑油系统进行健康管理的需求,本章通过实际航空发动机附件轴承的加速疲劳试验 进行本次滚动轴承疲劳寿命加速试验,利用油液分析的方法获取轴承磨损过程中所产生的 变化规律,为实际航空发动机滚动轴承磨损故障诊断提供技术基础和试验指导。

4.2 油液分析多源数据的获取

4.2.1 试验数据的获取

航空发动机的轴承极容易发生机械磨损,其中机械磨损又包括疲劳磨损、磨屑磨损和 黏着磨损,而疲劳磨损是最难预报的磨损类故障。因此,本文以航空发动机滚动轴承来模 拟疲劳磨损过程。

为达成试验目的,共针对三种型号的试件轴承,设计四阶段试验,采集试验样本、记录多种试验信号、获取有效的试验数据^[92]。

按照试验要求委托杭州轴承试验中心定制加工 ABLT-1A 型滚动轴承加速度疲劳试验器 1 台。试验机主要由试验头、试验头座、传动系统、加载系统、润滑系统、计算机监控系统等部分组成,如图 4.1。其主要技术指标如表 4.1 所示。

图 4.1 试验机

支持的试验轴承类	深沟球轴承、角接触球轴承、圆柱滚子轴承、圆锥滚子轴承、滚针轴承和调心滚
型:	子轴承
试验轴承内径:	φ10 毫米-φ60 毫米
试验轴承数量:	2 套或 4 套
最大径向载荷:	30千牛
最大轴向载荷:	10千牛
试验轴承转速:	3000~20000 转/分钟(无级变速)
供电电源:	380 伏,50 赫兹,三相
功率消耗:	约16千瓦
环境温度:	5~40 摄氏度
整机尺寸:	(长×宽×高)1500×720×1300 毫米
总净重:	约 1000 公斤

表 4.1 试验机主要技术指标

为达成试验目的,共针对三种型号的试件轴承,设计四阶段试验,采集试验样本、记 录多种试验信号、获取有效的试验数据。

按照试验要求委托人本轴承公司定制加工 M50 材料的圆柱滚子轴承 14 个,轴承型号 NU1009E; 定制加工 M50 材料的深沟球轴承 14 个,轴承型号 61807; 此外购置 6009 型号 陪试轴承 24 套,具体试验轴承型号如图 4.2 所示。

第1阶段轴承试件型号为 NU1009E,与某在研发动机轴承型号参数一致,轴承材质为 M50,安装在试验机第2号工位,预置缺陷,如图 4.3 所示。陪试轴承采用人本 C&U6009 型滚珠轴承(双面铁盖、脂封),汽油洗净后使用,安装在试验机第1、第4号工位,具 体参数如表 4.2 所示。在试验机的3号工位,安装完好的 M50 轴承,作为对比。在试验机

上,第1-4号工位接振动加速度传感器和温度传感器,形成4个数据采集通道,即通道1 到通道4。

表 4.2 第1阶段疲劳试验轴承参数

	滚动轴承型号	内径/mm	外径/mm	厚度/mm	滚动体数量	数量
轴承试件	圆柱滚子轴承	45	75	16	18	6
陪试件	C&U6009	45	75	16	12	6

第2阶段轴承试件型号为 NU1009E,与某在研发动机轴承型号参数一致,轴承材质为 M50,安装在试验机第2号工位,预置缺陷,如图 4.3 所示。陪试轴承采用瑞典 BMD6009 型滚珠轴承(双面铁盖、脂封、P4 精度),汽油洗净后使用,安装在试验机第1、第4号 工位,具体参数如表 4.4 所示。此外,在试验机的3号工位,安装完好的 M50 轴承,作为 对比。

图 4.4 第 2 阶段疲劳试验轴承试件安装示意图

	滚动轴承型号	内径/mm	外径/mm	厚度/mm	滚动体数量	数量	
轴承试件	圆柱滚子轴承	45	75	16	18	6	
陪试件	瑞典 BMD 6009	45	7.5	16	10	ſ	
	(2Z/P4)	45	/5	16	12	6	

表 4.3 第 2 阶段疲劳试验轴承参数

第3阶段轴承试件型号为61807,其内外圈材质选择为M50,滚珠材料为GCr15,保 持架材料为SPCC,铆钉材料为SWRCH15A。具体参数如表44所示。轴承试件安装在试 验机第1、2、3、4号工位,如图4.5。向试验机施加径向载荷时,第1、2、3、4号位径向 载荷相同。向试验机施加轴向载荷时,第1、4号位受轴向力,第2、3号位不受轴向力。

图 4.5 第 3 阶段疲劳试验轴承试件安装示意图

表 4.4	第3	阶段疲劳	试验轴承参数	Į

滚动轴承型号	内径/mm	外径/mm	厚度/mm	滚动体数量	数量
深沟球轴承	35	45	7	21	6

为切实发掘轴承在全寿命阶段故障演化趋势。补充完成了3组6009 球轴承的试验。 第4阶段作为第1轮的补充试验,轴承试件、陪试件以及安装情况与第2阶段一致。第4 阶段的补充试验第2-4轮,1到4号位轴承试件型号全部为BMD6009,试件安装情况如图 4.6 所示。本阶段试验所使用的M50和BMD6009型轴承参数如表4.5 所示。

图 4.6 第 4 阶段疲劳试验轴承试件安装示意图

	滚动轴承型号	内径/mm	外径/mm	厚度/mm	滚动体数量
轴承试件	M50圆柱滚子轴承	35	47	16	18
陪试件	BMD6009 球轴承	35	47	16	12

表 4.5 第 4 阶段疲劳试验轴承参数

本试验总时长超过 3240 小时,即大于 135 (天) ×24 (小时/天) =3240 (小时)。各 轴承试件所消耗的试验时间如图 7 所示。

图 4.7 各轴承试件的试验时间

试验共计使用美孚石油公司飞马二号航空润滑油 10 件,每件 24 瓶,每瓶 946 毫升。 本试验采集油液样本超过 540 份,即大于 135 (天)×4 (次/天)×1 (份/次) = 540 份。第 1 和第 2 阶段每次取样 2 瓶,每瓶 50 毫升;第 3 和第 4 阶段每次取样 1 瓶,每瓶 25 毫升。 根据试验要求,在试验进入磨损期之后,加大采样密度至每 1-2 小时取样 1 次。在第 1 阶 段前 2 轮试验中,未添加磁堵,直接从油箱采用滴管取油。增加磁堵后,从回油支路上油 箱前的阀门取油。各轮试验具体取油部位如图 4.8 (a)-图 4.8 (d)所示。

本试验共完成轴承 18 套,即从试验获取 18 套磨损的轴承试件,18 套轴承中,圆柱滚 子轴承 8 套,其中第1阶段 3 套、第2阶段 3 套、第4阶段第1轮 2 套;小球轴承 7 套, 均在第3阶段取得;6009球轴承 3 套,均从第4阶段试验取得。

4.2.2 试验数据预处理

为了验证本文所提出的航空发动机多目标融合诊断模型,采用 M50 材料的圆柱滚子轴 承试验数据作为模型验证数据,选择该类型轴承在不同磨损时期下的 6 组数据,为了模拟 航空发动机故障实况,本文在原先 6 组数据的基础上加入白噪声,获得了本次用于验证的 20 组数据。表 4.6-4.10 列出了全部用于分析的油液数据。其中由于对前期的油样数后期未 开展扫描电镜分析,因此本章仅列出 10 组能谱数据用于验证融合诊断模型的实用性。

数据	Fe	Cr	Pb	Cu	Sn	Al	Ni	Ti	Ag	Si	Mg	Mo
1	1.0 5 4	0.36	0.253	0.62	2.513	0.159	0.06	0.033	0.056	0.659	0.104	0.048
2	6.039	0.12	0.132	4.33	2.677	0.174	0.083	0.033	0.033	0.577	0.107	0.052
3	1.162	0.21	0.125	0.932	2.219	0.163	0.097	0.032	0.079	0.474	0.108	0.056
4	0.582	0	0.126	1.313	2.729	0.139	0.098	0.033	0.059	0.424	0.102	0.041
5	0.674	0.27	0.216	2.063	2.515	0.142	0.063	0.033	0.081	0.37	0.099	0.043
6	1.008	0.3	0.126	2.316	2.688	0.151	0.079	0.031	0.094	0.345	0.1	0.052
7	0.799	0.29	0.126	2.605	2.473	0.159	0.096	0.031	0.056	0.265	0.1	0.045
8	1.019	0.25	0.301	1.998	2.435	0.144	0.062	0.031	0.087	0.27	0.1	0.035
9	0.433	0.58	0.403	2.06	2.885	0.161	0.115	0.032	0.097	0.514	0.105	0.061
10	0.409	0.26	0.398	2.816	2.047	0.176	0.089	0.032	0.081	0.364	0.103	0.053
11	0.489	1.15	0.253	2.324	2.824	-0.052	0.088	0.043	0.101	0.345	0.068	0.048
12	1.097	0.73	0.225	4.41	2.696	-0.074	0.076	0.046	0.09	0.318	0.064	0.038

表 4.6 光谱数据 (ppm)

续表 4.6

_	-	X 10											
_	13	1.013	0.73	0.129	8.75	2.802	-0.06	0.072	0.043	0.102	0.262	0.068	0.041
	14	1.001	0.64	0.301	8.14	2.822	-0.035	0.096	0.043	0.081	0.285	0.062	0.048
	15	6.552	0.92	0.395	9.01	2.704	-0.058	0.096	0.042	0.087	0.284	0.063	0.055
	16	7.234	0.98	0.409	8.36	2.923	-0.035	0.1	0.042	0.062	0.301	0.066	0.051
	17	7.136	0.75	0.413	8.36	2.692	-0.058	0.112	0.041	0.059	0.462	0.062	0.043
	18	8.005	0.58	0.421	8.01	2.689	-0.035	0.115	0.042	0.201	0.421	0.065	0.058
	19	9.014	0.21	0.398	7.89	2.746	-0.058	0.124	0.041	0.203	0.372	0.063	0.06
	20	6.674	0.29	0.135	9.99	2.541	-0.027	0.112	0.041	0.099	0.336	0.062	0.058

表 4.7 铁谱数据(个/ml)

数据	疲劳磨粒	球状磨粒	层状磨粒	红色氧化物	黑色氧化物
1	2.6	3.45	0.64	2.05	0.17
2	3	3.3	0.62	2.23	0
3	2.9	3.4	0.53	2.13	0.28
4	3	3.36	0.64	1.69	0.04
5	2.7	3.38	0.60	1.52	0.03
6	3.6	3.93	0.66	2.1	0.09
7	3.1	3.85	1.22	2.4	0.26
8	3.7	3.79	1.02	2.1	0.31
9	3.4	3.83	1.13	2.7	0.26
10	3.4	5.2	0.95	2.6	0.27
11	3.1	3.45	1.12	3.2	0.31
12	3.8	3.3	1.15	2.9	0.34
13	3.6	3.4	1.07	3.4	0.38
14	3.3	3.36	1.19	3.2	0.47
15	7.7	3.38	1.14	3.4	0.54
16	7.7	3.93	1.19	3.3	0.59
17	7.5	3.85	1.10	3.3	0.66
18	7.8	3.79	1.76	3.3	0.76
19	7.1	3.83	1.91	3	0.83
20	7.4	5.2	1.95	3.4	0.95

数据	>	5µm		>15	μm		>25µ	ım		>50µr	n	
1	250)1.255		181.213			92.736			8.931		
2	17	99.37	522.769				290.427			11.40	5	
3	201	1.551	42.114			89.304			10.713			
4	563	30.736		213.	183		203.268			13.845		
5	311	2.509		88.5	515		91.5	91	15.163			
6	335	58.563		101.4	445		109.8	375		19.18	1	
7	351	2.164		233.	834		114.3	92		22.23	9	
8	370)6.492		339.	497		159.3	11		24.91	4	
9	305	50.338		339.	624		185.6	593		28.11	5	
10	394	19.739		443.	339		206.4	54		31.189		
11	406	51.191		457.4	468		241.1	79		37.518		
12	513	35.258		510.	801		296.5	546		35.713		
13	476	51.301		773.996			342.132			40.237		
14	493	86.113	806.105			357.5	511		44.79	4		
15	596	58.503	885.429		429		386.6	588		46.69)	
16	601	1.721	916.153		153		399.3	17		50.69	7	
17	659	92.866	996		852	400.503				54.08	1	
18	693	31.472	72 9		475		331.8	352		54.92	7	
19	77	30.14		1221.251			396.159			51.00	3	
20	808	38.109		1001	.774		426.019			47.429		
				表 4.9	能谱数	女据(ppr	n)					
数据	Cu	Zn	Al	Mn	Fe	Sn	Cr	Mo	V	0	С	
1	0.00	0.00	0.00	0.00	89.99	0.00	4.10	4.80	1.11	0.00	0.00	
2	0.00	0.00	0.00	0.00	89.62	0.00	4.25	4.78	1.35	0.00	0.00	
3	0.00	0.00	0.00	0.00	93.81	0.00	3.54	2.11	0.54	0.00	0.00	
4	0.00	0.00	0.00	0.00	90.29	0.00	4.33	4.67	0.71	0.00	0.00	
5	0.00	0.00	0.00	0.00	90.29	0.00	4.57	4.22	0.92	0.00	0.00	
6	0.00	0.00	0.00	0.00	89.66	0.00	4.39	4.93	1.02	0.00	0.00	
7	0.00	0.00	0.00	0.00	90.19	0.00	4.33	4.54	0.94	0.00	0.00	
8	0.00	0.00	0.00	0.00	69.21	0.00	0.00	0.00	0.00	30.79	0.00	
9	0.00	0.00	0.00	0.00	66.45	0.00	0.00	0.00	0.00	28.67	4.88	
10	0.00	0.00	0.00	0.00	84.4	0.00	11.6	3.23	0.77	0.00	0.00	

表 4.8 颗粒计数数据

		式 1 .10	理和妖师		
数据	粘度 mm ^{2.} s ⁻¹	酸度 mg·kg-1	闪点 t/℃	水分 mg·kg-1	杂质%
1	24.87	0.05	256.37	0.8	0.0301
2	24.83	0.04	256.72	1.9	0.1078
3	25.13	0.05	257.3	1.3	0.1054
4	25.01	0.07	258.52	1.4	0.1
5	25.14	0.05	257.78	1.5	0.1267
6	25.17	0.05	258.49	1.2	0.1153
7	25.12	0.05	259.92	1.5	0.1232
8	25.04	0.04	261.04	1.7	0.1361
9	25.1	0.04	261.61	1.4	0.1087
10	25.16	0.07	263.6	1.7	0.1361
11	25.05	0.05	261.37	1.7	0.1436
12	25.03	0.04	262.05	1.9	0.1440
13	24.71	0.04	263.99	1.9	0.1504
14	24.85	0.05	264.52	1.8	0.1527
15	25.78	0.08	267.72	1.8	0.1526
16	25.96	0.07	267.59	2.0	0.1514
17	25.98	0.05	269.37	2.2	0.1531
18	25.77	0.04	268.59	2.4	0.1534
19	25.62	0.05	269.43	2.5	0.155
20	25.64	0.05	269.44	2.5	0.1549

表 4.10 理化数据

4.3 验证结果及分析

4.3.1 基于模糊算法的 D-S 证据理论模型的滚动轴承磨损状态评估分析

由第三章内容可知,定性诊断模型诊断的第一步首先是对光谱分析数据、铁谱分析数据和理化分析数据进行模糊化处理。为了保持统一,本文在三种油样分析数据中均选取三个特征元素进行数据模糊化可视化。如图 4.9-4.11 所示,分别展示了三种油液分析的原始数据以及模糊化后的数据,其中光谱数据选择了 Fe、Ag 和 Cu 三种元素,铁谱数据选择了疲劳磨粒、球状磨粒和层状磨粒,颗粒计数数据选择了>15µm、>25µm 和>50µm 的磨粒数据。

正确处理相关油液数据之后,本文根据表 4.11 所示的规则可信度计算相关的综合可信 度,最后给出多条规则的融合诊断结果。

证据	规则可信度	故障分析方法	证据	规则可信度	故障分析方法
Fe	0.5	光谱分析	疲劳磨粒	0.4	铁谱分析
Cr	0.05		球状磨粒	0.1	
Pb	0.05		层状磨粒	0.1	
Cu	0.1		红色氧化物	0.2	
Sn	0.05		黑色氧化物	0.2	
Al	0.05		>5µm	0.1	颗粒计数分析
Ni	0.03		>15µm	0.2	
Ti	0.03		>25µm	0.3	
Ag	0.03		>50µm	0.4	
Si	0.05				
Mg	0.03				
Мо	0.03				

表 4.11 规则可信度

对于定性诊断,本文选取表 4.6、4.7、4.8 中数据 15 的光谱数据、铁谱数据和颗粒计数数据来对算例进行验证。由专家经验易知,该油样数据处于磨损的晚期,由表 4.12-表 4.16 的计算结果可知,各油液诊断结果均表示发动机处于故障状态,可以从不同侧面反应出此时发动机处于严重磨损状态,与定性融合诊断结果一致。其中,CFE、CFR、CF分别代表证据可信度、规则可信度和综合可信度。

表 4.12 光谱诊断结果

证据	CFE	CFR	CF	光谱诊断结果
Fe	1	0.5	0.5	0.661
Ag	0.0517	0.02	0.001	
Cu	1	0.1	0.1	
Cr	0.49	0.05	0.245	

表 4.13 铁谱诊断结果

证据	CFE	CFR	CF	铁谱诊断结果
疲劳磨粒	1	0.4	0.5	
球状磨粒	0.78	0.1	0.312	
层状磨粒	0.65	0.1	0.065	0.743
红色氧化物	0.72	0.2	0.144	
黑色氧化物	0.33	0.2	0.066	

		衣 4.14 秋松订致	100011年	
证据	CFE	CFR	CF	颗粒计数诊断结果
>5µm	1	0.1	0.1	
>15µm	0.98	0.2	0.196	0.696
>25µm	1	0.3	0.3	
>50µm	1	0.4	0.4	
	表 4	.15 光谱和铁谱器	油合诊断结果	
证据	CFE	CFR	CF	光谱和铁谱融合诊断结果
Fe	1	0.5	0.5	
Ag	0.0517	0.02	0.001	
Cu	1	0.1	0.1	
Cr	0.49	0.05	0.245	
疲劳磨粒	1	0.4	0.5	0.912
球状磨粒	0.78	0.1	0.312	
层状磨粒	0.65	0.1	0.065	
红色氧化物	0.72	0.2	0.144	
黑色氧化物	0.33	0.2	0.066	
		表 4.16 定性融合	诊断结果	
证据	CFE	CFR	CF	定性融合诊断结果
Fe	1	0.5	0.5	
Ag	0.0517	0.02	0.001	
Cu	1	0.1	0.1	
Cr	0.49	0.05	0.245	
疲劳磨粒	1	0.4	0.5	
球状磨粒	0.78	0.1	0.312	
层状磨粒	0.65	0.1	0.065	0.973
红色氧化物	0.72	0.2	0.144	
黑色氧化物	0.33	0.2	0.066	
>5µm	1	0.1	0.1	
>15µm	0.98	0.2	0.196	
>25µm	1	0.3	0.3	
>50µm	1	0.4	0.4	

表 4 14 颗粒计数诊断结果

4.3.2 基于一维卷积神经网络模型的滚动轴承故障部位识别分析

为了更好的说明本文方法的有效性,故在本节中采用与定性部分同一时间段的数据对本文方法进行验证。

图 4.12 能谱图

在基于以上发动机严重磨损的状态下,选取表 4.9 中的第6条能谱分析数据对故障进行定位诊断,数据能谱图及其元素具体信息可见图 4.12 和表 4.17。表 4.18 罗列了不同方法 概率大于 50%的前 5 种的诊断结果。其中黑体表示与专家诊断结果一致。

	元素	线类型 重	量百分比	Wt% Sigma	原子百分比
	Cr	K线系	4.39	0.15	4.80
	Fe	K线系	89.66	0.35	91.15
	V	K线系	1.01	0.11	1.13
	Мо	L线系	4.93	0.32	2.92
	总量		100.00		100.00
		表 4.18	定位诊断结果		
序号	Resnet18	Resnet34	LSTM	CNN	本文模型
1	0Cr18Ni9	ZL114A-T6	1Cr13	1Cr17Ni2	1Cr11Ni2W2MoV
	(84%)	(93%)	(90%)	(82%)	(95%)
2	镍石墨	1Cr11Ni2W2MoV	2Cr13	40CrNiMoA	2Cr13
	(77%)	(89%)	(86%)	(79%)	(91%)
3	1Cr12Ni2WMoVNb	18Cr2Ni4WA	ZG1Cr18Ni9Ti	1Cr13	1Cr13
	(77%)	(76%)	(84%)	(66%)	(89%)
4	1Cr17Ni2	1Cr17Ni2	1Cr11Ni2W2MoV	/ 1Cr18Ni9Ti	40CrNiMoA
	(72%)	(74%)	(79%)	(64%)	(85%)
5	1Cr11Ni2W2MoV	1Cr12Ni2WMoVNb	1Cr17Ni2	2Cr13	1Cr17Ni2
	(65%)	(71%)	(73%)	(53%)	(80%)

表 4.17 能谱图中各元素含量信息

对比表 4.17 中的 5 种算法可以看出,本文提出的 1DCNN-Resnet-LSTM 网络模型不论 在材料牌号识别的准确率上还是在识别的有效性上,都体现出了极大的优势,有力的说明 了本文方法在故障定位识别具有更好的诊断效果。

某型发动机润滑系统中的轴承、蜂窝组件和齿轮等部位是摩擦副的主要集中点,摩擦 副的材料主要有不锈钢、铜合金、铝合金和钛合金等,分别对应 29 种材料牌号,因此根据 材料牌号可快速推断出故障发生位置。

进一步的,根据材料牌号1Cr11Ni2W2MoV可以判断出其磨损部位是轴承区域。

4.3.3 基于知识规则的滚动轴承故障原因评估分析

获得定性诊断结果和定位诊断结果后,利用表 3.5 数据找出故障发生的原因。对照表 3.6 元素故障界限值,判断表 4.7 和表 4.10 中第 15 条数据的是否处于异常状态,具体结果 如表 4.19 和表 4.20 所示。

元素值	是否处于异常状态
疲劳磨粒数量>4(个/ml)	是
球状磨粒数量>5(个/ml)	是
层状磨粒数量<2(个/ml)	否
红色氧化物数量<3(个/ml)	否
黑色氧化物数量<2(个/ml)	否
22.2 (mm ² ·s ⁻¹) <黏度<27.5 (mm ² ·s ⁻¹)	否
酸值<0.15 (mg·kg ⁻¹)	否
闪点值<273(t/℃)	否
水分含量<0.001 (mg·kg ⁻¹)	否
杂质含量<0.1(%)	否

表 4.19 发动机磨损故障状态判断

判断此时理化分析数据均处于正常状态,铁谱分析数据中仅疲劳磨粒个数和球状磨粒 个数超出警告值,其余磨粒均处于正常状态,根据制定的故障原因诊断规则(匹配规则: Rule1,Rule2)获得的故障原因为滚动轴承剥落失效,与专家经验诊断结果一致。

表 4.20 定因诊断结果

诊断类型		诊断结果
铁谱诊断	结论	滚动轴承疲劳剥落失效(0.8)
		滚动轴承疲劳剥落失效(0.5)
	匹配的规则	Rule1,Rule2

4.4 本章小结

本章内容是对前几章工作的总结,将理论与实践想结合,通过实际航空发动机附件轴 承的全寿命疲劳试验,利用多种油液分析方法获取油液分析数据,对本文所建立的航空发 动机磨损故障多目标融合诊断模型进行了详细验证,结果表明本文所构建的智能融合诊断 方法是正确并且有效的,具有很强的工程实用价值,同时为下一章模型的具体应用做相关 准备。

第五章 航空发动机磨损故障多目标融合诊断应用

5.1 航空发动机磨损故障专家系统开发背景

对于试验所获得的颗粒物的大量原始数据,如果不借助于任何分析系统,单凭人工进 行分析,不仅费时费力,同时很大程度上需要依赖检测人员的经验进行判断,往往造成一 定偏差,并且会忽略不同类型数据之间的关联性、矛盾性和重复性等,必然影响故障诊断 和状态监测的准确度。因此,非常有必要建立油液数据的智能分析软件系统,通过与扫描 电镜等设备的配合使用,对获得的原始数据进行科学系统的处理,借助人工智能技术来实 现基于油液的航空发动机磨损故障多目标融合诊断。

5.2 专家系统总体结构图

专家系统的总体功能架构如图 5.1 所示,利用各项检测技术对滑油中磨损颗粒的特征 以及滑油本身的理化性能进行数据采集与处理,取得磨损颗粒的各项特征信号及油品的属 性特征,建立检测数据库,结合部件的构造、原理、运转的相关技术文档和维护策略,实 现磨损趋势预测、故障定位、故障诊断等功能。

图 5.1 专家系统总体结构图

5.3 专家系统的总体功能介绍

5.3.1 软件应用平台介绍

(1) 外部接口

外部接口需求主要为:一是通过和公司现有的工业网络相连接,基于 WebServise 技术 实现从服务器端下载、传输数据,为系统自动化、便捷化提供数据支撑。二是基于因特网 TCP/IP 网络传输技术,实现对数据库的网络部署。

(2) 设计标准约束

某型民用航空发动机状态监测与故障诊断专家系统软件开发应达到企业标准(草案) 水平。

(3) 计算机应用平台限制

基于 Windows 7/8/10 系统平台;基于当前微型计算机的流行配置: CPU P4 2.0G 以上, 内存 2G 或更高,硬盘空间在 500G 以上

5.3.2 数据库设计

专家系统数据库的表分为用户管理类、系统设置类、知识规则类、案例类及帮助类等, 如图 5.2 所示。

图 5.2 专家系统数据库结构

其中:

(1)判据库:以甲方提供的监测和检验等形成的历史数据积累为基础,并增加轴承试验过程中的监测数据及案例,对各种故障和不合格案例深入研究,采用统计分析方法,确定油液分析数据是否正常的判定依据,建立判据库;

(2)知识库:收集航空发动机在使用和维修过程中的滑油监测与诊断的经验,研究归 56
纳出知识规则,形成比较完善的知识规则和案例,并建立知识库对知识规则进行存储。作 为专家系统进行状态监测和故障诊断的依据之一;

(3)建立发动机典型磨损故障案例库,案例库中的案例需要用户在使用过程中在油样 分析数据库中选择典型的数据存入案例库,作为专家系统进行状态监测和故障诊断的依据 之一。

5.3.3 功能模块介绍

本次开发的软件功能模块共包括样品信息注册模块、阈值制定模块、趋势预测模块、 磨损颗粒智能分析模块、机器学习模块、专家诊断模块和多目标融合诊断。图 5.3 展示了 专家系统的登录界面和主界面。

图 5.3 专家系统登录界面

图 5.4 专家系统主界面

(1) 样品信息注册模块

专家系统样品信息注册模块实现油液检测信息的注册入库,为后续的专家诊断提供数据来源。油液检测数据通过手动和自动两种途径导入到专家系统油液分析数据库。同时,还需要建立关于用户信息、发动机信息、以及检测仪器信息等等相关数据库。

查询 查询字段: 	•	添加条件>>>					
关键词: 2021/11/17		删除所有条件			↓ 开始查试	6	
已经注册的油样数据一 「 新於计約	— *#	┏ 性滞	颗粒计数 光谱 铁谱 扫描电	鏡能谱 理化分析			
▶ 扫描电镜能谱	□ 九幅	I t⊼ ia	手动导入	自动导入	查看数	R	
·油样来源信息 发动机型号: 采样部位:		发; 送	助机工作时间: 0 滑油使用时间: 羊曰期:	0 滑油新加入重 : [2: 0 样品名称 样品编号: 「	:	
记录号 油样编号		样品编号	发动机型号	发动机编号	发动机工作时间	滑油使用时	删除已注册的 油样
							关闭

图 5.5 样品信息注册主要界面

(2) 阈值制定模块

以商发提供的监测和检验等形成的历史数据积累为基础,对各种故障和不合格案例深入研究,研究界限值制定方法,确定油液分析数据是否正常的判定依据,建立判据库。界限值制定方法主要包括:统计法和最大熵法。

 发动机组 	偏号: №02021001	T		统计法 ▼
•				注·样本母/100·是十篇
•				注: 件本里(100: 取入洞
•				样本量>=100: 统计法
				生成单个元素界限值
a.				
«·	TUSHAR.			保存
				PR 11
R:	浓度并常限:			
				自动产生并存储所有界限 值
度警告限(计算)	浓度异常限(初始)	浓度异常限(计算)	^	
0000	4.0000	4.0000		
0531	6.0000	10.4482		
6488	10.0000	0.6721		
1137	22.0000	3.3195		关闭
3214	4.0000	0.4350		
1257	6.0000	0.1450		
1674	4.0000	0.2573		
5519	10.0000	0.6632		
1176	4.0000	0.1343		
0628	6.0000	0.0696		
0471	6.0000	0.0518		
0365	2.0000	0.0689		注:
0000	5.0000	0.0000	~	調査大の実明なるすが
	R: [g警告限(计算)] 0000 0531 6488 1137 3214 1257 1674 5519 1176 0628 0471 0365 0000	R:浓度异常限: R:浓度异常限(计算) 浓度异常限; 定整吉限(计算) 浓度异常限(初始) 0000 4.0000 0531 6.0000 0531 6.0000 0531 6.0000 137 22.0000 137 22.0000 137 4.0000 157 6.0000 1257 6.0000 1257 6.0000 1176 4.0000 0519 10.0000 1176 4.0000 0528 6.0000 0528 6.0000 0528 6.0000 0528 5.20000 0505 5.0000 0505 5.0000 0555 5.00000 0555 5.00000 0555 5.00000 0555 5.00000 0555 5.00000 0555 5.0000000 0555 5.0	浓度异常限: 浓度异常限: R: 浓度异常限: 原警告限(计算) 浓度异常限(初始) 次度异常限:	R: 次度异常限: 家度写常限: 家度写常限: 家度写常限: R: 次度异常限(功始) 家度异常限(计算) ∧ (10000 4.0000 4.0000 0000 4.0000 10.4462 6488 10.0000 0.6721 1137 22.0000 0.1450 1257 6.0000 0.1450 1257 6.0000 0.4573 5519 10.0000 0.6692 1176 4.0000 0.6692 0471 6.0000 0.0518 0259 2.0000 0.0669 0471 6.0000 0.0518 0365 2.0000 0.0669 0000 5.0000 0.0000 ↓

图 5.6 阈值制定主要界面

(3) 趋势预测模块

从注册的油样数据库中,读出历史油样数据,按时间的先后顺序画出趋势图,分析相 关参数的变化趋势,从趋势图上可以发现故障的出现。另外,通过建立数学模型对下一时 刻的油样分析数据进行预测。

图 5.7 趋势预测主要界面

(4) 融合诊断模块

多目标融合诊断模块主要以实现发动机轴承定性分析、定位分析和定因分析为目标。 融合发动机多油品信息,综合考虑润滑油油品因素对发动机运行状态的影响,建立发动机 运行状态综合评判模型。关于融合诊断模块将在下一节详细讲述,该模块也是本文重点开 发对象。

5.4 航空发动机磨损故障多目标融合诊断模块

5.4.1 开发思路

专家系统软件中航空发动机磨损故障多目标融合诊断主要根据油液数据,从数据库中 调用已计算好的元素警告和异常界限值,以 D-S 证据理论融合算法的方式进行故障诊断, 实现对磨损部位的定性诊断。基于深度学习,以能谱分析数据为驱动,实现对磨损部位的 定位诊断。通过融合定性、定位的结果,采用模糊理论实现对磨损部位的定因诊断。

该部分利用各项检测技术对滑油中磨损颗粒的特征以及滑油本身的理化性能进行数据 采集与处理,取得磨损颗粒的各项特征信号及油品的属性特征,以所建立的属性特征为输 入主要实现故障的定性和定位分析。算法首先基于模糊算法实现定性分析,然后根据定性 分析结果实现故障的定位分析,最后利用多源信息进行定性分析。

5.4.2 主要界面

如图 5.8 所示的是磨损故障多目标融合诊断的主界面之一,在该界面中,首先选择发动机型号、发动机编号、采样部位、采样日期和样品类型,其中样品类型包括油样和颗粒。 系统默认先分析油样,在右边上方列表框中列出所有满足查询条件的油样,点击任意一条 油样编号,在下方基于多种油样分析数据的模糊融合诊断框中显示油样编号对应的光谱分 析数据、颗粒计数分析数据、理化分析数据和铁谱分析数据。点击开始融合诊断,出现如 图 5.9 融合诊断界面。

图 5.8 融合诊断界面一

在该界面中选择模糊诊断的阈值,包括初始阈值和计算阈值。点击"开始诊断"按钮, 在故障类型列表框中以及下方对话框中生成故障发生的可能性,在融合诊断结果对话框中 显示对应的诊断结果。并将诊断结果返回到模糊融合诊断主界面的数据层模糊融合诊断结 果对话框中,且直接将结果以案例的形式,将诊断结果保存入库。然后点击"下一步"出现 如图 5.10 所示故障定位和故障定因的界面。系统直接显示当前选中油样下的能谱数据。

融合诊断								×
光谱分析数据	Fe	Cr P	b Cu Sn	Al Ni	Ti V	Ba B	颗粒计数分析数据 >5 μ _n >15 μ _n >25 μ	m>50 μm
检测值:	1.162	0.141 0.32	9 0.637 2.66	2 0.206 0.107	0.036 -0.026		检测值: 6564 989 206 警告限: 20000 8000 1000	44
警古限:			5 15				异常限: 40000 15000 2000	300
开帛限:							证据可信度: 0 0	0
规则可信度:	0.5	0.05 0.0	5 0.1 0.0	0.05 0.02	0.02 0	0 0	规则可信度: 0.1 0.2 0.3	0.4
检测值:	Ca 0	Mn F	Ag Si	07 Mg Mo 0.084 0.055	K Na 0 0	S Zn 0 0		杂质含量 水分含量
警告限:	1	1	3 1 5	1 3	1 1	1 1	检测值: 1 24.82 163	4.64 4
异常限:	5	5	4 10	4 6	5 5	5 5	警告限: 0.2 50 100	0.02 0.02
证据可信度:	0	0 0	0 0	0 0	0 0	0 0	异常限: 1 100 2200	
规则可信度:	0	0.05	0.02 0.0	5 0.02 0.02	0 0	0 0	证据可信度: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05 0.05
- 铁谱分析数据 (个	/ml) —			故障模糊集合的隶	属度曲线		发动机型号: XXX1000	诊断阈值选择 (• 初始阈值
	疲労磨粒 	球状磨粒	居状贈粒 65	1.0			故障类型: 袖承严重疲劳剥落 _	○ 计算阈值
警告限:	30	30	20				I由会论细环结理。	开始诊断
异常限:	60	60	40	0.5	\geq		их си усилат.	下一步
规则可信度:	0.5	0.4	0.1	0.0	a, a	· · · · •	x	上一步

图 5.9 融合诊断界面二

点击"磨损部位诊断"按钮,在磨损部位诊断结果的列表框中生成对应的诊断结果,同 时在磨损原因对话框中显示对应的故障原因。点击"保存为案例",将诊断结果保存入库。

点击"磨损部位查看按钮"可视化显示当前磨损部位。

IX1000 fe2021001	<u>序号 油样编号</u> 1 XXX1000-Ne2021001-引	冒油箱−颗粒−2020/12/7−1	扫描电镜图片编号	「転給成分分析影道の演具」		
XX1000 Fe2021001	1 XXX1000-No2021001-	冒油箱−颗粒−2020/12/7−1		1 #2012.0007.0.70101.00040044090 1-2		
fo2021001			20	4		
11111111111111111111111111111111111111						
020/12/7						
1						
2712						
的作数循膀换部位诊断		1				
析数据(单位: ¥t.%)	41 C: P	- 慶換部	位诊断结果			磨损部位诊(
			材料名称	可能性	部件名称	
Cr Mn Fe Co	Ni Cu Zn	As Se				商场和估查。
0 0 0 0	0 0 0	0 0				JETRAPIZE 4
Mo Ag Cd Sn	Sb Ce W	Pb Bi				
0 0 0 0	0 0 0	0 0 4				保存为案例
102 102 102 102 102 102 102 102 102 102	の2/7 2 2 支援援(単位)を載 支援援(単位)を載 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇	Aligned Control Aligned Control Pick of the Contro Pick of the Contro <t< td=""><td>Ministric Ministric <t< td=""><td>Array Act Si P S Ca 0 0 0 0 0 0 0 0 Cr Ma Fe Co Hi Co 0 0 0 0 0 No 0 0 0 0 0 0 0 0 0 No Act CA Sh Co Sc Sc<td>Physical Science P S Ca Million Pipe Pipe</td><td>Cr Ns Fe Co Ni Ca Table Cr Ns Fe Co Ni Ca Table Ma Ag Cd Sh Sb Co P Ni Ca Table T</td></td></t<></td></t<>	Ministric Ministric <t< td=""><td>Array Act Si P S Ca 0 0 0 0 0 0 0 0 Cr Ma Fe Co Hi Co 0 0 0 0 0 No 0 0 0 0 0 0 0 0 0 No Act CA Sh Co Sc Sc<td>Physical Science P S Ca Million Pipe Pipe</td><td>Cr Ns Fe Co Ni Ca Table Cr Ns Fe Co Ni Ca Table Ma Ag Cd Sh Sb Co P Ni Ca Table T</td></td></t<>	Array Act Si P S Ca 0 0 0 0 0 0 0 0 Cr Ma Fe Co Hi Co 0 0 0 0 0 No 0 0 0 0 0 0 0 0 0 No Act CA Sh Co Sc Sc <td>Physical Science P S Ca Million Pipe Pipe</td> <td>Cr Ns Fe Co Ni Ca Table Cr Ns Fe Co Ni Ca Table Ma Ag Cd Sh Sb Co P Ni Ca Table T</td>	Physical Science P S Ca Million Pipe Pipe	Cr Ns Fe Co Ni Ca Table Cr Ns Fe Co Ni Ca Table Ma Ag Cd Sh Sb Co P Ni Ca Table T

图 5.10 融合诊断界面三

图 5.11 磨损部位可视化显示界面

5.4.3 结果输出

在专家系统开发阶段,分别采用 46 组样本数据进行磨损定性分析,诊断准确率为 90%以上,采用 70 组样本中,磨损材料牌号识别及定位分析中准确率为 85%以上。如图 5.12 为多目标融合诊断模块专家系统功能验证具体流程。由此验证结果可见,本文所搭建 的专家系统有极高的工程应用价值,适用性较高。

在该专家系统诊断结束之后,若需要将诊断结果以 Word 的方式呈现出现,则可以点击界面中的输出报告按钮,将结果以报告的形式输出,报告名称具体到输出报告的秒。报告形式如图 5.13 所示。

图 5.12 专家系统验证流程

		油样约	扁号:	CJ100	0-No2	021	001-	滑油	箱-油	样-202	11208-	1						
发起	动机型号	1		CJ10	00			发动	加机编	号		No20	210	01				
采	样部位			滑油	箱			采	样日期	朝	20	21/12/8	3 1 1:	03:00				
光谱分	析数据	(单位	: mg/k	g)														
Fe	(r	Pb		Cu			Sn		Al		Ni		Ag				
1.56	0	.14	0.2	7	0.6	2		2.92		0.23	(0.09		0.02				
Si	Ν	ſg	Mo		Ti			V		Ba		В		Ca				
0.32	0	.10	0.0	6	0.04	4	-(0.03		0.00		0.00		0.00				
Mn	1	P	K		Na			S		Zn								
0.00	0	.00	0.0	0	0.0	0		0.00		0.00								
理化分词	析数据																	
酸	值	粘度) 使(mm	r^2/s)	<u>N</u>]点	(°C))		《质 (%	i)	水ź		%)				
(mgK	OH/g)																	
0	1.05		24.53			161	61.00 3.87					1.00						
粮粒计	数分析数	1918(里位:	个) 							_							
^	>5µm			>15 µ	m			>	25µn	n		>50 µ m						
	568.00			6985.	00			2	34.00)		0	.00					
铁谱分	析数据	(単位	:个/雪	9))		l. otr	1.3.561	-										
3	疲劳 磨粒	2数重			层状磨粒数量			球状	播粒数	탳菫								
	0.0	0				0	.00					0.00						
扫描电	镜能请	実践(里位:	Wt.%)	-	_			-			_					
Be	В	С	N		0	N	lg	A	1	Si	Р	S	_	Ca				
0.00	0.00	0.00	0.0	00	0.00	0	.00	0.0	. 00	0.00	0.00	0.0	00	0.00				
n	V	Cr	M	n	re	C	0	N	1	Cu	Zn	A	s	Se				
0.00	0.00	0.00	0.0	10	0.00	0	.00	0.0	00	0.00	0.00	0.0	00	0.00				
Zr	Nb	Mo	A	g	Ca	S	n	SI	2	Ce	W	Pt	>	Bi				
0.00 مديند خ	U.00 *C 4士 田	0.00	0.0	00	0.00	0	.00	0.	00	0.00	0.00	0.0	JU	0.00				
定性的 完估还	划 纪米: 新 姓 田																	
正辺で	判结未:																	
正凶び	刨 結米: 回 ま 」							-	コ 北方 「									
7	前农人							Ħ	口即									
	Ψ1V		1						THEF.		1							

发动机磨损故障融合诊断报告

图 5.13 融合诊断报告输出

5.5 本章小结

(1)本章介绍了基于 Windows10 操作系统(64 位)开发的专家系统,该专家系统选用 C++程序设计语言,并选用 Microsoft Visual C++6.0 开发环境完成本次开发,选用 Microsoft Access 数据库作为该专家系统的管理系统,与 ODBC 连接,进行数据传输。该专家系统实现了本文提出的磨损故障多目标融合诊断功能,同时也包括样品信息注册、阈值制定、趋势预测等功能。

(2)本软件开发成功后,提交给中国航发上海商用航空发动机制造有限责任公司,目前已经作为该公司的磨损状态监测与故障诊断软件开始使用。该公司目前有国家重点型号牵引,具有先进的油样检测设备,在航空发动机研制过程中积累了大量的油液分析数据,为专家系统的应用提供了可靠的保障。

第六章 总结与展望

6.1 全文工作总结

本文研究了航空发动机磨损故障融合诊断技术,主要研究工作和研究成果如下:

(1)单一数据源在故障诊断中的不确定性和模糊性,会影响整体决策并导致诊断错误, 提出了利用融合技术将多个来源的信息结合在一起,充分利用油液分析数据的互补性,依 据光谱数据特点、铁谱数据特点、颗粒计数数据特点、能谱数据特点和理化数据特点,实 现发动机磨损故障融合诊断。

(2)提出了一种改进的深度学习分类算法一1DCNN-Resnet-LSTM,并将其应用于磨损部位识别,该方法能够避免传统人工故障特征提取经验所带来的偏差,通过获得深层次的故障信息,快速找到故障部位,提高了诊断的准确性。

(3)提出了融合多种方法的磨损故障多目标智能诊断模型,从故障状态、故障部位和 故障原因三方面对磨损故障进行全面诊断。在定性部分,利用 D-S 证据理论融合油液光谱 数据、铁谱数据和颗粒计数数据,准确地判断出发动机故障状态;在定位部分,基于所提 出的 1DCNN-Resnet-LSTM 网络模型,来实现磨损部位的准确识别;在定因部分,充分利 用专家经验,并将该部分知识转化为知识规则,利用专家推理的方法,对铁谱数据和理化 数据的变化进行分析,最终找出发动机磨损故障原因。

(4)针对某型航空发动机附件轴承的全寿命疲劳试验,定期抽取油样以分析滚动轴承 磨损趋势及磨损状况,利用大量的油液检测数据,对本文提出的磨损故障多目标智能诊断 模型进行了验证和分析,实现了磨损缺陷的定性、定位和定因诊断。

(5)开发了一个具有自主知识产权和数据分析能力的发动机磨损诊断专家系统,实现 了本文提出的融合多种方法的磨损故障多目标智能诊断算法。目前,该专家系统已开始应 用于某航空发动机研制单位,并在实践中取得了良好的应用效果。

6.2 未来工作展望

在本文中,研究了有关航空发动机智能磨损故障诊断的几个关键问题。讨论了诸如磨 损状况确定、基于深度学习的故障定位分类、磨损故障诊断的知识获取和基于融合的诊断 技术等方面。然而,在以下方面还需要进一步研究:

(1)在本文研究内容里,深度学习和知识规则获取都需要大量的数据样本,尤其是典型的故障样本。就飞机发动机的磨损状况检测而言,正常样本很容易获得,但故障样本很 难获得。因此,如何克服样本数据的缺乏是未来需要解决的一个重要问题。

(2)专家系统在航空发动机故障诊断中的应用仍然需要进一步扩大,以便获得更多的 航空发动机故障的真实数据,并使获得的学习模型和知识规则更加准确和有意义。

64

参考文献

- [1] 马善涛. 基于深度学习的航空发动机故障诊断方法研究[D].哈尔滨理工大学,2022.
- [2] Shi Xiangyang. Research on aero-engine fault diagnosis based on integrated neural net work[J]. Mathematical Models in Engineering, 2019, 5(2) : 41-47.
- [3] 马帅,吴亚锋,郑华,缑林峰. 基于飞行过程数据的航空发动机故障诊断方法研究[J]. 推进 技术:1-14.
- [4] 林京,张博瑶,张大义,等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报,2 022,43(08):7-20.
- [5] 田晨. 复杂工况条件下航空发动机故障诊断与预测[D].大连理工大学,2021.
- [6] Y. Hu, X. Miao, Y. Si, et al., Prognostics and health management: A review from th e perspectives of design, development and decision, Reliability Engineering & System Safety, 2022, 217.
- [7] 韩建军,张华,张瑞,等. 航空发动机健康管理系统技术与标准发展综述[J]. 航空标准化与 质量, 2013(03):5-9.
- [8] Li Y.Y. et al. Analysis of Physical Condition of Aero-Engines Based on Flight Data[J]. Materials Science Forum, 2012, 697/698 : 560-565.
- [9] Di Sun, Haijun Wei, Haifeng Liao. Recent Patents on Oil Analysis Technologies of Mechanical Equipment[J]. Recent Patents on Mechanical Engineering, 2012, 6(1) : 11-25.
- [10] Yong Guo Zhang et al. Application of Oil Analysis Techniques to Diesel Engine Con dition Monitoring[J]. Applied Mechanics and Materials, 2012, 2029(224-224) : 217-22 0.
- [11] 毛美娟,朱子新,王峰. 机械装备油液监控技术与应用.北京:国防工业出版社,2006:115~1 16.
- [12] 马佳丽,陈果,康玉祥,等. 航空发动机磨损故障多目标融合诊断[J/OL].航空动力学报:1-10 [2022-12-02].
- [13] 曹明,王鹏,左洪福,等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J].航空学报,2022,43(9):40.
- [14] 李爱. 航空发动机磨损故障智能诊断若干关键技术研究[D].南京航空航天大学,2013.
- [15] Poley, Jack. Complexity in oil analysis: Part VIII[J]. Tribology & Lubrication Technol ogy . 2013. 1: 37-39.

- [16] Byington C S, Schalcosky D C. Advances in real time oil Analysis. Practicing Oil A nalysis Magazine, 2000, 11(2): 28-34.
- [17] 白敬彩,王新环,王国柱,等. 基于 STM32 的谐振式油品检测系统设计[J].仪表技术与传感器,2019(12):4.
- [18] 牛泽,李凯,白文斌,等. 电感式油液磨粒传感器系统设计[J].机械工程学报,2021,57(12):12 6-135.
- [19] 李应红,尉询楷,刘建勋. 支持向量机的工程应用. 北京: 民兵工业出版社,2004.
- [20] 周正. 我军某型直升机发动机故障诊断专家系统的开发[D].东北大学,2014.
- [21] 黄嵩勋. 某发动机故障分析及专家系统知识库设计[D].大连理工大学,2016.
- [22] 陈果,宋兰琪,陈立波,等. 基于粗糙集理论的航空发动机滑油光谱诊断专家系统知识获取 方法研究[J].机械科学与技术,2007(07):897-901.
- [23] 周俊. 航空发动机振动监测与故障诊断系统研究[D].华中科技大学,2016.
- [24] 孙德涵. 基于油液在线分析的大型减速器故障预警系统研究[D].中国矿业大学,2022.
- [25] 徐现强. 基于知识约简的航空发动机涡轮部件故障诊断专家系统设计[D].大连理工大学,2021.
- [26] 彭寿鑫. 基于多特征量的航空发动机气路系统健康状态预测方法研究[D].长春工业大学,2022.
- [27] NIU Y M, WONG Y S, HONG G S. An intelligent sensor system approach for relia ble tool flank wear recognition[J]. The International Journal of Advanced Manufacturi ng Technology,1998,14(2):77-84.
- [28] 曹明,黄金泉,周健,等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇I: 气路、 机械和 FADEC 系统故障诊断与预测[J]. 航空学报,2022,43(09):9-41+2.
- [29] 黄金泉,王启航,鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学 学报,2020,52(04):507-522.
- [30] VOLPONI A. Data fusion for enhanced aircraft engine prognostics and health manage ment: NASA/CR-2005-214055[R]. Washington, D C.: NASA, 2005.
- [31] DEMPSEY P J, KREIDER G, FICHTER T. Tapered roller bearing damage detection using decision fusion analysis: NASA/TM—2006-214380 [R]. 2006.
- [32] Wang Kun,Guo Yingqing,Zhao Wanli, et al. Gas path fault detection and isolation for aero-engine based on LSTM-DAE approach under multiple-model architecture[J]. Meas urement,2022,202.
- [33] Liu Junqiang. Gas path fault diagnosis of aircraft engine using HELM and transfer le arning[J]. Engineering Applications of Artificial Intelligence,2022,114.

- [34] 赵方,谢友柏,柏子游. 油液分析多技术集成的特征与信息融合[J].摩擦学学报,1998(01):4 6-53.
- [35] 严新平,谢友柏,萧汉梁. 摩擦学故障种类诊断的 D-S 信息融合研究[J].摩擦学学报,1999(02):50-55.
- [36] 陈恬,孙健国,郝英. 基于神经网络和证据融合理论的航空发动机气路故障诊断[J].航空 学报,2006(06):1014-1017.
- [37] 鲁峰,黄金泉,仇小杰,等. 基于信息熵融合提取特征的发动机气路分析[J].仪器仪表学报, 2012,33(01):13-19.
- [38] 李业波,李秋红,黄向华,等. 航空发动机气路部件故障融合诊断方法研究[J].航空学报,20 14,35(06):1612-1622.
- [39] 曹桂松,马佳丽,苗慧慧,等. 一种航空发动机磨损故障模糊融合诊断方法[J].润滑与密封, 2022,47(03):150-156.
- [40] 文成林,吕菲亚. 基于深度学习的故障诊断方法综述[J].电子与信息学报,2020,42(01):234 -248.
- [41] Jinjiang Wang, Yulin Ma, Laibin Zhang, et al. Deep learning for smart manufacturing: Methods and applications[J]. Journal of Manufacturing Systems,2018,48.
- [42] GAN Meng, WANG Cong, ZHU Chang'an. Construction of hierarchical diagnosis net work based on deep learning and its application in the fault pattern recognition of rol ling element bearings[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 92– 104.
- [43] CHOW M Y, MANGUM P, THOMAS R J. Incipient fault detection in DC machines using a neural network[C]. The 22nd Asilomar Conference on Signals, Systems and Co mputers, Pacific Grove, USA, 1988: 706-709.
- [44] Qi Yumei, Shen Changqing, Wang Dong, et al. Stacked Sparse Autoencoder-Based D eep Network for Fault Diagnosis of Rotating Machinery[J]. IEEE Access,2017,5.
- [45] Cao Jie, Ma Jialin, Huang Dailin, et al. Method to enhance deep learning fault diagn osis by generating adversarial samples[J]. Applied Soft Computing Journal,2022,116.
- [46] Funa Zhou, Shuai Yang, Hamido Fujita, et al. Deep learning fault diagnosis method b ased on global optimization GAN for unbalanced data[J]. Knowledge-Based Systems,2 020,187 (Jan.):104837.1-104837.19.
- [47] Feiya Lv, Chenglin Wen, Meiqin Liu. Representation learning based adaptive multimode process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181.

- [48] Linxia Liao, Wenjing Jin, Radu Pavel. Enhanced Restricted Boltzmann Machine With Prognosability Regularization for Prognostics and Health Assessment.[J]. IEEE Trans. I ndustrial Electronics,2016,63(11).
- [49] Shao Haidong, Jiang Hongkai, Zhang Haizhou, et al. Electric Locomotive Bearing Fau It Diagnosis Using a Novel Convolutional Deep Belief Network[J]. IEEE Transactions on Industrial Electronics,2018,65(3).
- [50] S. Sina Tayarani-Bathaie, K. Khorasani. Fault detection and isolation of gas turbine e ngines using a bank of neural networks[J]. Journal of Process Control,2015,36.
- [51] 王修岩,李萃芳,李宗帅. 基于 SOM 和协同学的航空发动机气路故障诊断研究[J].计算机 测量与控制,2014,22(02):319-320+328.
- [52] Jiao Liu, Jinfu Liu, Daren Yu, et al. Fault Detection for Gas Turbine Hot Component s Based on a Convolutional Neural Network[J]. Energies,2018,11(8).
- [53] Tao Jie, Liu Yilun, Yang Dalian. Bearing Fault Diagnosis Based on Deep Belief Net work and Multisensor Information Fusion[J]. Shock and Vibration,2016.
- [54] Han Liu, Jianzhong Zhou, Yanhe Xu, et al. Unsupervised fault diagnosis of rolling be arings using a deep neural network based on generative adversarial networks[J]. Neuro computing,2018,315.
- [55] 杨洁,万安平,王景霖,等. 基于多传感器融合卷积神经网络的航空发动机轴承故障诊断[J]. 中国电机工程学报,2022,42(13):4933-4942.
- [56] Gecgel Ozhan, Dias João Paulo, Ekwaro Osire Stephen, et al. Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings[J]. Journa 1 of Tribology,2021,143(8).
- [57] 李海平,赵建民,张鑫,等. 行星齿轮箱齿轮磨损故障诊断[J].振动与冲击,2019,38(23):84-8 9+125.
- [58] 杨智宏,贺石中,冯伟,等. 基于 Mask R-CNN 网络的磨损颗粒智能识别与应用[J].摩擦学 学报,2021,41(01):105-114.
- [59] Xueyi LI, Jialin LI, Yongzhi QU, et al. Semi-supervised gear fault diagnosis using ra w vibration signal based on deep learning[J]. Chinese Journal of Aeronautics,2020,33(2).
- [60] 朱渔,李丹,李晓明,等. 基于 EEMD 和 BLSTM 算法的齿轮泵行星轮典型故障诊断[J].机 械设计与研究,2022(004):038.
- [61] 石新发,邢广笑,贺石中,等. 基于熵理论和 BP 神经网络的船舶柴油机磨损故障识别[J]. 润滑与密封,2022,47(07):54-58.

- [62] Wang Zisheng, Xuan Jianping, Shi Tielin. Multi-source information fusion deep self-at tention reinforcement learning framework for multi-label compound fault recognition[J]. Mechanism and Machine Theory, 2023, 179
- [63] Wang Chongyu, Zhu Guangya, Liu Tianyuan, et al. A sub-domain adaptive transfer le arning base on residual network for bearing fault diagnosis[J]. Journal of Vibration an d Control, 2023, 29(1-2) : 105-117.
- [64] Zhicheng Jiao, Xinbo Gao, Ying Wang, et al., Deep convolutional neural networks fo r mental load classification based on EEG data, Pattern Recogn. 76 (2018) 582–595.
- [65] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444.
- [66] Olmedilla M , MR Martínez-Torres, Toral S . Prediction and modelling online review s helpfulness using 1D Convolutional Neural Networks[J]. Expert Systems with Applic ations, 2022, 198:116787-.
- [67] S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Trans. Biomed. Eng. 63 (3) (2015) 664–675.
- [68] A.v.d. Oord, S. Dieleman, H. Zen, et al, Wavenet: A generative model for raw audio, 2016, arXiv preprint arXiv:1609.03499.
- [69] O. Abdeljaber, O. Avci, S. Kiranyaz, et al, D.J. Inman, Real-time vibration-based stru ctural damage detection using one-dimensional convolutional neural networks, J. Sound Vib. 388 (2017) 154–170.
- [70] W. Zhang, C. Li, G. Peng, et al, A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load, Mech. Syst. Signal Process. 100 (2018) 439–453.
- [71] M. Fukuhara, K. Fujiwara, Y. Maruyama, et al, Feature visualization of Raman spectr um analysis with deep convolutional neural network, Anal. Chim. Acta 1087 (2019) 1 1–19.
- [72] X. Zhang, J Xu, J Yang, et al., Understanding the learning mechanism of convolution al neural networks in spectral analysis, Anal Chim Acta 1119 (2020) 41–51.
- [73] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// 20
 16 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 201
 6.
- [74] He K, Zhang X, Ren S, et al. Identity Mappings in Deep Residual Networks[C]// Eur opean Conference on Computer Vision. Springer, Cham, 2016.
- [75] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.

- [76] Albawi S, Mohammed T.A, Al-Zawi S. Understanding of a Convolutional Neural Net work. In Proceedings of the 2017 International Conference on Engineering and Techn ology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.
- [77] Aloysius N, Geetha M. A Review on Deep Convolutional Neural Networks. In Procee dings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Tamilnadu, India, 6–8 April 2017; pp. 0588–0592.
- [78] Khan Z.A, Hussain T, Ullah A, et al. Towards Efficient Electricity Forecasting in Re sidential and Commercial Buildings: A Novel Hybrid CNN with a LSTM-AE Based Framework. Sensors 2020, 20, 1399.
- [79] Hinton G.E, Srivastava N, Krizhevsky A, et al. Improving Neural Networks by Preve nting Co-Adaptation of Feature Detectors. arXiv 2012, arXiv:1207.0580.
- [80] Yangfan Zhou et al. MPCE: A Maximum Probability Based Cross Entropy Loss Func tion for Neural Network Classification.[J]. IEEE Access, 2019, 7 : 146331-146341.
- [81] S. Ruder, An overview of gradient descent optimization algorithms, 2016, arXiv:1609. 04747.
- [82] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv:1412.6 980.
- [83] 陈果,马佳丽,康玉祥,等. 一种航空发动机故障部位识别方法及系统[P]. 江苏省: CN114 897101A,2022-08-12.
- [84] D. Dua, C. Graff, UCI machine learning repository, 2017, URL <u>http://archive.ics.uci.ed</u> u/ml.
- [85] Basir O, Yuan X. Engine fault diagnosis based on multi-sensor information fusion usi ng Dempster–Shafer evidence theory[J]. Information Fusion, 2007, 8(4):379-386.
- [86] 王古常,成坚,鲍传美,等. 模糊推理和证据理论融合的航空发动机故障诊断[J]. 航空动力 学报, 2011, 26(9):2101-2106.
- [87] 陈果,陈立波,宋兰琪. 一种磨损故障融合诊断新方法及其应用[J]. 机械科学与技术, 200 9, 28(09):1157-1161.
- [88] Zhuang Z L, Lv H C,Xu J, et al. A Deep Learning Method for Bearing Fault Diagn osis through Stacked Residual Dilated Convolutions[J]. Applied Sciences, 2019, 9(9):1 823.
- [89] WANG Y M, CHENG L. A combination of residual and long-short-term memory net works for bearing fault diagnosis based on time-series model analysis[J]. Measurement Science and Technology, 2021, 32: 015904.

- [90] Jais I, Ismail A R, Nisa S Q. Adam Optimization Algorithm for Wide and Deep Neu ral Network[J]. Knowledge Engineering and Data Science, 2019, 2(1):41.
- [91] 陈果,左洪福. 基于知识规则的发动机磨损故障诊断专家系统[J].航空动力学报,2004(01): 23-29.
- [92] 马佳丽,陈果,康玉祥,等. 一种航空发动机磨损故障模糊融合诊断方法及系统[P]. 江苏省: CN114636555A,2022-06-17.

致 谢

两年半的时光匆匆而过,很庆幸我在这两年半里变成了一个更加自信、更加勇敢,也更加坚定的自己。与此同时,也很感谢旅途中一直陪伴我,给予我无数支持与鼓励的人们。

首先我要感谢我的导师陈果教授,自研一成为陈老师的学生到研三临近毕业,这一路 走来,无论在科研还是生活中遇到困难,陈老师都是我坚实的后盾。陈老师从确定研究课 题、课题研究方法与进度、试验的开展以及毕业论文的撰写都给予了非常大的支持。陈老 师的言传身教以及全心全意为学生着想的品质让我由衷敬佩。很庆幸能成为陈老师的学生, 陈老师教给我的一切必将终生受用。

非常感谢 IDES 智能诊断与专家系统实验室的陪伴,感谢潘文平老师、郝腾飞老师对 我学术活动上的帮助。感谢李爱老师在我写论文时对我的指导以及对我在生活上的照顾。 感谢康玉祥博士带我进入神经网络的大门,在我迷茫时耐心的帮助我指导我。感谢教研室 刘西洋博士、贺志远博士、赵紫豪博士、沈响响博士、张旭博士、张杰毅师兄、杨默晗师 兄、李伦绪师兄、何超师兄、赵旭升、盛嘉玖、钱进对我生活的照顾和学习上的帮助。感 谢王雨薇六年半时间的陪伴,既是同门又是朋友,我们携手从本科走到了研究生,我们也 必将这份友谊持续一辈子。感谢 20403 寝室的赵希凡、江佳佳和吕少岚,此情犹如亲情, 感谢你们在生活上给予的帮助和支持,20403 永远都是一个温暖的港湾。感谢我的男朋友 李德文,感谢你在我秋招求职路上和论文撰写迷茫的时候开导我,鼓励我,让我相信自己 的能力。

感谢我的父亲和母亲,是你们给了我健康和快乐的资本,让我可以无忧无虑的度过了 学生生涯,感谢你们给我的满满的爱,让我一直乐观、一直开朗、善良,这份恩情此生永 不忘!

感谢在南航里收获到的所有的爱,感谢遇见的所有人!

马佳丽

2022年12月17日

于南京航空航天大学民航学院

在学期间的研究成果及发表的学术论文

攻读硕士学位期间发表(录用)论文情况

- 1、**马佳丽**,陈果,康玉祥等.航空发动机磨损故障多目标融合诊断[J/OL].航空动力学报(已录
- 用,EI检索,重要核心期刊)

2、曹桂松,**马佳丽**,苗慧慧等.一种航空发动机磨损故障模糊融合诊断方法[J]. 润滑与密封,2022,47(03):150-156.(**已发表,核心期刊**)

3、王雨薇,陈果,何超,郝腾飞,**马佳丽**.基于改进 YOLOv4 的扫描电镜磨粒图像智能识别 [J/OL].摩擦学学报(已录用,EI检索,重要核心期刊)

攻读硕士学位期间申请专利情况

- 1、**马佳丽**,陈果,康玉祥等. 一种航空发动机磨损故障模糊融合诊断方法及系统[P]. 江苏省: CN114636555A,2022-06-17. (**已公开**)
- 2、陈果,马佳丽,康玉祥等.一种航空发动机故障部位识别方法及系统[P]. 江苏省: CN114897101A,2022-08-12. (已公开)

攻读硕士学位期间参加科研项目情况:

- 中国航发商用发动机有限责任公司项目:民用航空发动机滑油摩擦磨损颗粒测试分析技 术研究,2020.1-2021.12
- 2、国家科技重大专项(J2019-IV-004-0071),子课题:复杂服役环境下主轴承典型故障宏 观动力学研究,2020-2024

材料牌号	E	le		В	(С		N		0
	下限	上限	下限	上限	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	0	0	0	0	0	0.09	0	0	0	0
0Cr17Ni4Cu4Nb	0	0	0	0	0	0.07	0	0	0	0
0Cr18Ni9	0	0	0	0	0	0.07	0	0	0	0
1Cr11Ni2W2MoV	0	0	0	0	0.1	0.16	0	0	0	0
1Cr12Ni2WMoVNb	0	0	0	0	0.11	0.17	0	0	0	0
1Cr13	0	0	0	0	0.08	0.15	0	0	0	0
1Cr17Ni2	0	0	0	0	0.11	0.17	0	0	0	0
1Cr18Ni9Ti	0	0	0	0	0	0.12	0	0	0	0
2Cr13	0	0	0	0	0.16	0.25	0	0	0	0
8Cr4Mo4V	0	0	0	0	0.75	0.85	0	0	0	0
15CrMnMoVA	0	0	0	0	0.1	0.18	0	0	0	0
18Cr2Ni4WA	0	0	0	0	0.13	0.19	0	0	0	0
35Cr2Ni4MoA	0	0	0	0	0.3	0.4	0	0	0	0
40CrNiMoA	0	0	0	0	0.36	0.44	0	0	0	0
40CrNiMoV	0	0	0	0	0.36	0.44	0	0	0	0
锻件钢 9310	0	0	0	0.001	0.07	0.13	0	0.0025	0	0.0015
GH536	0	0	0	0.01	0.05	0.15	0	0	0	0
GH4169	0	0	0	0.006	0.02	0.06	0	0.01	0	0.01
5A06	0.001	0.005	0	0	0	0	0	0	0	0
65Mn	0	0	0	0	0.62	0.7	0	0	0	0
M50NiL	0	0	0	0	0.11	0.15	0	0		0
M50	077	0	0	0	0.8	0.85	0	0	0	0
ZL114A-T6	0	0.07	0	0	0	0	0	0	0	0
ZTC4	0	0	0	0	0	0.1	0	0.05	0	0.2
ZG0Cr16Ni4NbCu3	0	0	0	0	0	0.06	0	0	0	0
ZG1Cr18Ni9Ti	0	0	0	0	0	0.12	0	0	0	0
IN718	0	0	0	0.006	0.02	0.08	0	0	0	0
镍石墨温合金	0	0	0	0	0	25	0	0	0	0

附录 某型航空发动机材料元素含量标准表(单位: ppm)

60Si2MnA	0	0	0	0.0035	0.52	0.6	0	0	0	0

材料牌号	Ν	lg	A	Al	s	Si]	Р	5	3
	下限	上限	下限	上限	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	0	0	0.75	1.5	0	1	0	0.035	0	0.025
0Cr17Ni4Cu4Nb	0	0	0	0	0	1	0	0.035	0	0.025
0Cr18Ni9	0	0	0	0	0	0.8	0	0.035	0	0.025
1Cr11Ni2W2MoV	0	0	0	0	0	0.6	0	0.03	0	0.02
1Cr12Ni2WMoVNb	0	0	0	0	0	0.6	0	0.03	0	0.025
1Cr13	0	0	0	0	0	0.8	0	0.3	0	0.025
1Cr17Ni2	0	0	0	0	0	0.8	0	0.025	0	0.03
1Cr18Ni9Ti	0	0	0	0	0	0.8	0	0.035	0	0.025
2Cr13	0	0	0	0	0	0.8	0	0.03	0	0.025
8Cr4Mo4V	0	0	0	0	0	0.35	0	0.015	0	0.008
15CrMnMoVA	0	0	0	0	0	0.2	0	0.015	0	0.01
18Cr2Ni4WA	0	0	0	0	0.17	0.37	0	0	0	0
35Cr2Ni4MoA	0	0	0	0	0.15	0.4	0	0.015	0	0.01
40CrNiMoA	0	0	0	0	0.17	0.37	0	0.025	0	0.025
40CrNiMoV	0	0	0	0	0.17	0.37	0	0	0	0
锻件钢 9310	0	0	0	0	0.15	0.35	0	0.015	0	0.015
GH536	0	0	0	0	0	1	0	0.025	0	0.015
GH4169	0	0.01	0.3	0.7	0	0.35	0	0.015	0	0.015
5A06	5.8	6.8	91.5	93.68	0	0.4	0	0	0	0
65Mn	0	0	0	0	0.17	0.37	0	0.035	0	0.035
M50NiL	0	0	0	0	0.1	0.25	0	0.015	0	0.01
M50	0	0	0	0	0	0.25	0	0.015	0	0.008
ZL114A-T6	0	0	99	100	0	0	0	0	0	0
ZTC4	0	0	5.5	6.8	0	0.15	0	0	0	0
ZG0Cr16Ni4NbCu3	0	0	0	0	0	0.7	0	0.04	0	0.03
ZG1Cr18Ni9Ti	0	0	0	0	0	1	0	0.035	0	0.03
IN718	0	0	0.3	0.7	0	0.35	0	0.015	0	0.015
镍石墨温合金	0	0	0	0	0	0	0	0	0	0
60Si2MnA	0	0	0	0	1.5	2	0	0.035	0	0.035

材料牌号	0	Ca	1	Ĩi	v	V	C	Cr	М	In
	下限	上限	下限	上限	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	0	0	0	0	0	0	16	18	0	1
0Cr17Ni4Cu4Nb	0	0	0	0	0	0	15	17.5	0	1
0Cr18Ni9	0	0	0	0	0	0	17	19	0	2
1Cr11Ni2W2MoV	0	0	0	0	0.18	0.3	10.5	12	0	0.6
1Cr12Ni2WMoVNb	0	0	0	0	0.2	0.3	11	12	0	0.6
1Cr13	0	0	0	0	0	0	12	14	0	0.8
1Cr17Ni2	0	0	0	0	0	0	16	18	0	0.8
1Cr18Ni9Ti	0	0	0	0	0	0	0	0	0	2
2Cr13	0	0	0	0	0	0	12	14	0	0.8
8Cr4Mo4V	0	0	0	0	0.9	1.1	3.75	4.25	0	0.35
15CrMnMoVA	0	0	0	0	0.2	0.3	1.25	1.5	0.8	1.1
18Cr2Ni4WA	0	0	0	0	0	0	1.35	1.65	0.25	0.55
35Cr2Ni4MoA	0	0	0	0	0	0	1.6	2	0.3	0.6
40CrNiMoA	0	0	0	0	0	0	0.6	0.9	0.5	0.8
40CrNiMoV	0	0	0	0	0	0	0.6	0.9	0.5	0.8
锻件钢 9310	0	0	0	0	0	0	1	1.4	0.4	0.7
GH536	0	0	0	0.15	0	0	20.5	23	0	1
GH4169	0	0	0.75	1.15	0	0	17	21	0	0.35
5A06	0	0	0.02	0.1	0	0	0	0	0.5	0.8
65Mn	0	0	0	0	0	0	0	0.25	0.9	1.2
M50NiL	0	0	0	0	1.13	1.33	4	4.25	0.15	0.35
M50	0	0	0	0	0.9	1.1	4	4.25	0.15	0.35
ZL114A-T6	0	0	0	0	0	0	0	0	0	0.1
ZTC4	0	0	85.59	91	3.5	6.8	0	0	0	0
ZG0Cr16Ni4NbCu3	0	0	0	0.05	2.8	3.5	15.5	16.7	0.5	1
ZG1Cr18Ni9Ti	0	0	0	0.7	0	0	17	20	0.8	2
IN718	0	0	0.65	1.15	0	0	17	21	0	0.35
镍石墨温合金	0	0	0	0	0	0	0	0	0	0
60Si2MnA	0	0	0	0	0.08	0.16	0	0.35	0.7	1

材料牌号	F	⁷ e	C	Co	N	Ji	C	u	Z	'n
	下限	上限	下限	上限	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	70.85	76.75	0	0	6.5	7.5	0	0	0	0
0Cr17Ni4Cu4Nb	69.905	78.85	0	0	3	5	3	5	0	0
0Cr18Ni9	67.07	75	0	0	8	11	0	0	0	0
1Cr11Ni2W2MoV	81.99	85.97	0	0	1.4	1.8	0	0	0	0
1Cr12Ni2WMoVNb	81.575	85.24	0	0	1.8	2.2	0	0	0	0
1Cr13	83.925	87.92	0	0	0	0	0	0	0	0
1Cr17Ni2	77.675	82.39	0	0	1.5	2.5	0	0	0	0
1Cr18Ni9Ti	0	96.22	0	0	0	0	0	0	0	0
2Cr13	84.095	87.84	0	0	0	0	0	0	0	0
8Cr4Mo4V	87.677	93.6	0	0.25	0	0.2	0	0.2	0	0
15CrMnMoVA	95.695	97.03	0	0	0	0	0	0	0	0
18Cr2Ni4WA	91.54	93.3	0	0	4	4.5	0	0	0	0
35Cr2Ni4MoA	91.775	94.2	0	0	3.5	4.2	0	0	0	0
40CrNiMoA	95.19	96.97	0	0	1.25	1.75	0	0.25	0	0
40CrNiMoV	95.49	96.97	0	0	1.25	1.75	0	0	0	0
锻件钢 9310	93.385	95.45	0	0	3	3.5	0	0.35	0	0
GH536	17	20	0.5	2.5	40.15	53.75	0	0.5	0	0
GH4169	13.55	24.13	0	1	50	55	0	0	0.01	0
5A06	0	0.1	0	0	0	0	0	0.1	0	0.2
65Mn	96.91	98.31	0	0	0	0.25	0	0.25	0	0
M50NiL	85.045	87.31	0	0.25	3.2	3.6	0	0.1	0	0
M50	87.927	90.15	0	0.25	0	0.15	0	0.1	0	0
ZL114A-T6	0	0	0	0	0	0	0	0.1	0	0.1
ZTC4	0	0.3	0	0	0	0	0	0	0	0
ZG0Cr16Ni4NbCu3	72.85	77.45	0	0	3.6	4.6	0	0	0	0
ZG1Cr18Ni9Ti	65.115	74.2	0	0	8	11	0	0	0	0
IN718	11.28	24.83	0	1	50	55	0	0.3	0	0
镍石墨温合金	0	0	0	0	0	75	0	0	0	0
60Si2MnA	95.2165	97.1995	0	0	0	0.35	0	0.25	0	0

材料牌号	A	s	5	Se	Z	Zr	Nb		Мо	
	下限	上限	下限	上限	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	0	0	0	0	0	0	0	0	0	0
0Cr17Ni4Cu4Nb	0	0	0	0	0	0	0.15	0.45	0	0
0Cr18Ni9	0	0	0	0	0	0	0	0	0	0
1Cr11Ni2W2MoV	0	0	0	0	0	0	0	0	0.35	0.5
1Cr12Ni2WMoVNb	0	0	0	0	0	0	0.15	0.3	0.8	1.2
1Cr13	0	0	0	0	0	0	0	0	0	0
1Cr17Ni2	0	0	0	0	0	0	0	0	0	0
1Cr18Ni9Ti	0	0	0	0	0	0	0	0	0	0
2Cr13	0	0	0	0	0	0	0	0	0	0
8Cr4Mo4V	0	0	0	0	0	0	0	0	4	4.5
15CrMnMoVA	0	0	0	0	0	0	0	0	0.8	1
18Cr2Ni4WA	0	0	0	0	0	0	0	0	0	0
35Cr2Ni4MoA	0	0	0	0	0	0	0	0	0.25	0.6
40CrNiMoA	0	0	0	0	0	0	0	0	0.15	0.25
40CrNiMoV	0	0	0	0	0	0	0	0	0.15	0.25
锻件钢 9310	0	0	0	0	0	0	0	0	0.08	0.15
GH536	0	0	0	0	0	0	0	0	8	10
GH4169	0	0	0	0.0003	0	0	5	5.5	2.8	3.3
5A06	0	0	0	0	0	0	0	0	0	0
65Mn	0	0	0	0	0	0	0	0	0	0
M50NiL	0	0	0	0	0	0	0	0	4	4.5
M50	0	0	0	0	0	0	0	0	4	4.5
ZL114A-T6	0	0	0	0	0	0	0	0	0	0
ZTC4	0	0	0	0	0	0	0	0	0	0
ZG0Cr16Ni4NbCu3	0	0	0	0	0	0	0.15	0.4	0	0.02
ZG1Cr18Ni9Ti	0	0	0	0	0	0	0	0	0	0
IN718	0	0.005	0	0	0	0.05	0	0	2.8	3.3
镍石墨温合金	0	0	0	0	0	0	0	0	0	0
60Si2MnA	0	0	0	0	0	0	0	0	0	0

材料牌号	A	Ag	C	Cd	s	n	s	b	C	le l
	下限	上限	下限	上限	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	0	0	0	0	0	0	0	0	0	0
0Cr17Ni4Cu4Nb	0	0	0	0	0	0	0	0	0	0
0Cr18Ni9	0	0	0	0	0	0	0	0	0	0
1Cr11Ni2W2MoV	0	0	0	0	0	0	0	0	0	0
1Cr12Ni2WMoVNb	0	0	0	0	0	0	0	0	0	0
1Cr13	0	0	0	0	0	0	0	0	0	0
1Cr17Ni2	0	0	0	0	0	0	0	0	0	0
1Cr18Ni9Ti	0	0	0	0	0	0	0	0	0	0
2Cr13	0	0	0	0	0	0	0	0	0	0
8Cr4Mo4V	0	0	0	0	0	0	0	0	0	0
15CrMnMoVA	0	0	0	0	0	0	0	0	0	0
18Cr2Ni4WA	0	0	0	0	0	0	0	0	0	0
35Cr2Ni4MoA	0	0	0	0	0	0	0	0	0	0
40CrNiMoA	0	0	0	0	0	0	0	0	0	0
40CrNiMoV	0	0	0	0	0	0	0	0	0	0
锻件钢 9310	0	0	0	0	0	0	0	0	0	0
GH536	0	0	0	0	0	0	0	0	0	0
GH4169	0	0.001	0	0	0	0.005	0	0	0	0
5A06	0	0	0	0	0	0	0	0	0	0
65Mn	0	0	0	0	0	0	0	0	0	0
M50NiL	0	0	0	0	0	0	0	0	0	0
M50	0	0	0	0	0	0	0	0	0	0
ZL114A-T6	0	0	0	0	0	0	0	0	0	0
ZTC4	0	0	0	0	0	0	0	0	0	0
ZG0Cr16Ni4NbCu3	0	0	0	0	0	0	0	0	0	0
ZG1Cr18Ni9Ti	0	0	0	0	0	0	0	0	0	0
IN718	0	0	0	0	0	0.002	0	0.001	0	0
镍石墨温合金	0	0	0	0	0	0	0	0	0	0
60Si2MnA	0	0	0	0	0	0	0	0	0	0

材料牌号	W		Pb		Bi	
	下限	上限	下限	上限	下限	上限
0Cr17Ni7Al-H1/2	0	0	0	0	0	0
0Cr17Ni4Cu4Nb	0	0	0	0	0	0
0Cr18Ni9	0	0	0	0	0	0
1Cr11Ni2W2MoV	1.5	2	0	0	0	0
1Cr12Ni2WMoVNb	0.7	1	0	0	0	0
1Cr13	0	0	0	0	0	0
1Cr17Ni2	0	0	0	0	0	0
1Cr18Ni9Ti	0	0	0	0	0	0
2Cr13	0	0	0	0	0	0
8Cr4Mo4V	0	0.25	0	0	0	0
15CrMnMoVA	0	0	0	0	0	0
18Cr2Ni4WA	0.8	1.2	0	0	0	0
35Cr2Ni4MoA	0	0	0	0	0	0
40CrNiMoA	0	0	0	0	0	0
40CrNiMoV	0	0	0	0	0	0
锻件钢 9310	0	0	0	0	0	0
GH536	0.2	1	0	0	0	0
GH4169	0	0	0	0.001	0	0.001
5A06	0	0	0	0	0	0
65Mn	0	0	0	0	0	0
M50NiL	0	0.15	0	0	0	0
M50	0	0.25	0	0	0	0
ZL114A-T6	0	0	0	0	0	0
ZTC4	0	0	0	0	0	0
ZG0Cr16Ni4NbCu3	0	0.05	0	0	0	0
ZG1Cr18Ni9Ti	0	0	0	0	0	0
IN718	0	0	0	0.001	0	0.0001
镍石墨温合金	0	0	0	0	0	0
60Si2MnA	0	0	0	0	0	0

续表